Your browser doesn't support javascript.
loading
Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals.
Zhang, Yutong; Tao, Lixue; Zhao, Lebin; Dong, Chaohong; Liu, Yun; Zhang, Kaitao; Liimatainen, Henrikki.
Afiliação
  • Zhang Y; Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
  • Tao L; Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
  • Zhao L; Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China.
  • Dong C; Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles,
  • Liu Y; Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles,
  • Zhang K; Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles,
  • Liimatainen H; Fibre and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014, Finland.
J Colloid Interface Sci ; 676: 61-71, 2024 Jul 14.
Article em En | MEDLINE | ID: mdl-39018811
ABSTRACT
Biogenic, sustainable two-dimensional architectures, such as films and nanopapers, have garnered considerable interest because of their low carbon footprint, biodegradability, advanced optical/mechanical characteristics, and diverse potential applications. Here, bio-based nanopapers with tailored characteristics were engineered by the electrostatic complexation of oppositely charged colloidal phosphorylated cellulose nanofibers (P-CNFs) and deacetylated chitin nanocrystals (ChNCs). The electrostatic interaction between anionic P-CNFs and cationic ChNCs enhanced the stretchability and water stability of the nanopapers. Correspondingly, they exhibited a wet tensile strength of 17.7 MPa after 24 h of water immersion. Furthermore, the nanopapers exhibited good thermal stability and excellent self-extinguishing behavior, triggered by both phosphorous and nitrogen. These features make the nanopapers sustainable and promising structures for application in advanced fields, such as optoelectronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China