Your browser doesn't support javascript.
loading
Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium.
Li, Haoyu; Hu, Chunhua; He, Xinyi; Wang, Jun; Tian, Shihong; Zhu, Xuejun; Mao, Xuehua.
Afiliação
  • Li H; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China. Electronic address: 18213836872@163.com.
  • Hu C; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
  • He X; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
  • Wang J; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
  • Tian S; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China. Electronic address: tianshihong@cigit.ac.cn.
  • Zhu X; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
  • Mao X; College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
Ultrason Sonochem ; 109: 106998, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39032369
ABSTRACT
Landfilled metallurgical residues are valuable raw materials for the recovery of strategic vanadium resources. However, efficient separation of vanadium from these residues is challenging due to its strong oxidation resistance and coating within silicate inclusions. To address this issue, this study proposes an enhanced leaching process utilizing the synergistic effect of O3-catalyzed ultrasonic field in a low concentration sulfuric acid system. Results show that following a 10-minute O3 and ultrasonic treatment, the direct leaching rate of vanadium experienced a remarkable 46.7 % increase. Quenching experiments revealed a hierarchical order of active species within the reaction process⋅OH >⋅O2-> H+, with⋅OH oxidation exhibiting the most pronounced capacity for disrupting the inclusion structure. Electron Paramagnetic Resonance analysis indicated that the highest⋅OH yield arose from the combined application of ultrasound and ozone. Kinetic investigations demonstrated that the vanadium leaching process is governed by interfacial chemical reactions. The activation energy of vanadium oxidation leaching under ultrasonic-O3 conditions was determined to be 40.41 kJ/mol, representing a 20.19 % reduction compared to ultrasonic conditions alone. Through the integration of analysis, characterization, and comparative evaluations, it was discerned that the synergistic impact of ultrasonic and ozone treatments significantly enhances the breakdown of silicate inclusions by low-concentration HF, particularly in the conversion of SiOSi bonds into SiOH bonds and SiF bonds. In summary, the refined leaching methodology incorporating ozone catalysis in conjunction with ultrasonic treatment provides a new idea for the separation and extraction of refractory residual vanadium.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ultrason Sonochem Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ultrason Sonochem Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article