Your browser doesn't support javascript.
loading
Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton.
Qi, Guoan; Si, Zhanfeng; Xuan, Lisha; Han, Zegang; Hu, Yan; Fang, Lei; Dai, Fan; Zhang, Tianzhen.
Afiliação
  • Qi G; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China.
  • Si Z; The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
  • Xuan L; The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
  • Han Z; The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
  • Hu Y; The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
  • Fang L; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China.
  • Dai F; The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
  • Zhang T; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China.
Plant Biotechnol J ; 2024 Jul 24.
Article em En | MEDLINE | ID: mdl-39046162
ABSTRACT
The elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene-environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near-isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre-quality-related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis-expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co-expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plant Biotechnol J Assunto da revista: BIOTECNOLOGIA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China