Your browser doesn't support javascript.
loading
Airway proteomics reveals broad residual anti-inflammatory effects of prednisolone in mepolizumab-treated asthma.
Howell, Imran; Yang, Freda; Brown, Vanessa; Cane, Jennifer; Marchi, Emanuele; Azim, Adnan; Busby, John; McDowell, Pamela J; Diver, Sarah E; Borg, Catherine; Heaney, Liam G; Pavord, Ian D; Brightling, Christopher E; Chaudhuri, Rekha; Hinks, Timothy S C.
Afiliação
  • Howell I; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom. Electronic address: Imran.howell@ndm.ox.ac.uk.
  • Yang F; University of Glasgow, Glasgow, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
  • Brown V; Queen's University of Belfast, Belfast, United Kingdom.
  • Cane J; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • Marchi E; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • Azim A; University of Southampton Faculty of Medicine, Southampton, United Kingdom.
  • Busby J; Queen's University of Belfast, Belfast, United Kingdom.
  • McDowell PJ; Queen's University of Belfast, Belfast, United Kingdom.
  • Diver SE; Institute for Lung Health, University of Leicester, Leicester, United Kingdom.
  • Borg C; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • Heaney LG; Queen's University of Belfast, Belfast, United Kingdom.
  • Pavord ID; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • Brightling CE; Institute for Lung Health, University of Leicester, Leicester, United Kingdom.
  • Chaudhuri R; University of Glasgow, Glasgow, United Kingdom.
  • Hinks TSC; Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Article em En | MEDLINE | ID: mdl-39097197
ABSTRACT

BACKGROUND:

Mepolizumab is an anti-IL-5 mAb treatment for severe eosinophilic asthma that reduces asthma exacerbations. Residual airway inflammation with mepolizumab therapy may lead to persistent exacerbations. Oral corticosteroids remain the main treatment for these residual exacerbations.

OBJECTIVE:

Our study aimed to explore the corticosteroid responsiveness of airway inflammation after mepolizumab treatment to find potentially treatable inflammatory mechanisms beyond the IL-5 pathway.

METHODS:

The MAPLE trial was a multicenter, randomized, double-blind, placebo-controlled, crossover study of 2 weeks of high-dose oral prednisolone treatment at stable state in 27 patients treated with mepolizumab for severe eosinophilic asthma. We analyzed paired sputum (n = 16) and plasma (n = 25) samples from the MAPLE trial using high-throughput Olink proteomics. We analyzed additional sputum proteins using ELISA.

RESULTS:

In patients receiving mepolizumab, prednisolone significantly downregulated sputum proteins related to type 2 inflammation and chemotaxis including IL-4, IL-5, IL-13, CCL24, CCL26, EDN, CCL17, CCL22, OX40 receptor, FCER2, and the ST2 receptor. Prednisolone also downregulated cell adhesion molecules, prostaglandin synthases, mast cell tryptases, MMP1, MMP12, and neuroimmune mediators. Neutrophilic pathways were upregulated. Type 2 proteins were also downregulated in plasma, combined with IL-12, IFN-γ, and IP-10. IL-10 and amphiregulin were upregulated.

CONCLUSIONS:

At stable state, prednisolone has broad anti-inflammatory effects on top of mepolizumab. These effects are heterogeneous and may be clinically relevant in residual exacerbations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Allergy Clin Immunol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Allergy Clin Immunol Ano de publicação: 2024 Tipo de documento: Article