Your browser doesn't support javascript.
loading
Variation in the Spectrum of New Mutations among Inbred Strains of Mice.
López-Cortegano, Eugenio; Chebib, Jobran; Jonas, Anika; Vock, Anastasia; Künzel, Sven; Tautz, Diethard; Keightley, Peter D.
Afiliação
  • López-Cortegano E; Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
  • Chebib J; Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
  • Jonas A; Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
  • Vock A; Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
  • Künzel S; Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
  • Tautz D; Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
  • Keightley PD; Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article em En | MEDLINE | ID: mdl-39101589
ABSTRACT
The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼µ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Camundongos Endogâmicos Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Camundongos Endogâmicos Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article