Your browser doesn't support javascript.
loading
Chloride deregulation and GABA depolarization in MTOR related malformations of cortical development.
Bakouh, Naziha; Castaño-Martín, Reyes; Metais, Alice; Dan, Emanuela Loredana; Balducci, Estelle; Chhuon, Cerina; Lepicka, Joanna; Barcia, Giulia; Losito, Emma; Lourdel, Stéphane; Planelles, Gabrielle; Muresan, Raul C; Moca, Vasile Vlad; Kaminska, Anna; Bourgeois, Marie; Chemaly, Nicole; Rguez, Yasmine; Auvin, Stéphane; Huberfeld, Gilles; Varlet, Pascale; Asnafi, Vahid; Guerrera, Ida Chiara; Kabashi, Edor; Nabbout, Rima; Ciura, Sorana; Blauwblomme, Thomas.
Afiliação
  • Bakouh N; Université Paris Cité, INSERM U1163, Institut Imagine, « Translational Research in Neuroscience ¼ Lab, 75015 Paris, France.
  • Castaño-Martín R; Université Paris Cité, INSERM U1163, Institut Imagine, « Translational Research in Neuroscience ¼ Lab, 75015 Paris, France.
  • Metais A; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France.
  • Dan EL; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, service de Neuropathologie, F-75014 Paris, France.
  • Balducci E; STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania.
  • Chhuon C; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Lepicka J; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Barcia G; INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France.
  • Losito E; INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France.
  • Lourdel S; Université Paris Cité, INSERM U1163, Institut Imagine, « Translational Research in Neuroscience ¼ Lab, 75015 Paris, France.
  • Planelles G; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Muresan RC; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Moca VV; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Kaminska A; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Bourgeois M; Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France.
  • Chemaly N; CNRS EMR 8228 - Laboratory of Renal Physiology and Tubulopathies, Paris, France.
  • Rguez Y; Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France.
  • Auvin S; CNRS EMR 8228 - Laboratory of Renal Physiology and Tubulopathies, Paris, France.
  • Huberfeld G; STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania.
  • Varlet P; STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania.
  • Asnafi V; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Guerrera IC; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Kabashi E; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Nabbout R; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Ciura S; Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
  • Blauwblomme T; Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France.
Brain ; 2024 Aug 06.
Article em En | MEDLINE | ID: mdl-39106285
ABSTRACT
Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified. GABAa mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, was shown to participate to ictogenesis in human pediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is still unclear. Here we studied the post translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCC), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and ultimately GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo controls, diagnosed by histology plus genetic profiling) were operated for drug resistant epilepsy. Postoperative cortical tissues were recorded on multielectrode array (MEA) to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled Cl- conductance and equilibrium potential (EGABA) for GABA measurement. Of the 25 clinical cases, half harbored a somatic mutation in the mTOR pathway, while pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, that was reversed by WNK1 and SPAK antagonists (NEM and Staurosporine). mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR specific antagonist Rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in EGABA by rapamycin, measured after incorporation of MCD membranes to X. laevis oocytes, in line with a reestablishment of normal ECl-. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to chloride cotransporters deregulation, increased neuronal chloride levels and GABAa dysfunction in malformations of Cortical Development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Brain Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Brain Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França