Your browser doesn't support javascript.
loading
Exploring Hospital Overcrowding with an Explainable Time-to-Event Machine Learning Approach.
Haraldsson, Tobias; Marzano, Luca; Krishna, Harsha; Lethval, Sven; Falk, Nina; Bodeby, Patrik; Raghothama, Jayanth; Meijer, Sebastiaan; Darwich, Adam S.
Afiliação
  • Haraldsson T; KTH Royal Insitute of Technology, Stockholm, Sweden.
  • Marzano L; KTH Royal Insitute of Technology, Stockholm, Sweden.
  • Krishna H; KTH Royal Insitute of Technology, Stockholm, Sweden.
  • Lethval S; Uppsala Academic Hospital, Uppsala, Sweden.
  • Falk N; Uppsala Academic Hospital, Uppsala, Sweden.
  • Bodeby P; Uppsala Academic Hospital, Uppsala, Sweden.
  • Raghothama J; KTH Royal Insitute of Technology, Stockholm, Sweden.
  • Meijer S; KTH Royal Insitute of Technology, Stockholm, Sweden.
  • Darwich AS; KTH Royal Insitute of Technology, Stockholm, Sweden.
Stud Health Technol Inform ; 316: 678-682, 2024 Aug 22.
Article em En | MEDLINE | ID: mdl-39176833
ABSTRACT
Emergency department (ED) overcrowding is a complex problem that is intricately linked with the operations of other hospital departments. Leveraging ED real-world production data provides a unique opportunity to comprehend this multifaceted problem holistically. This paper introduces a novel approach to analyse healthcare production data, treating the length of stay of patients, and the follow up decision regarding discharge or admission to the hospital as a time-to-event analysis problem. Our methodology employs traditional survival estimators and machine learning models, and Shapley additive explanations values to interpret the model outcomes. The most relevant features influencing length of stay were whether the patient received a scan at the ED, emergency room urgent visit, age, triage level, and the medical alarm unit category. The clinical insights derived from the explanation of the models holds promise for increase understanding of the overcrowding from the data. Our work demonstrates that a time-to-event approach to the over- crowding serves as a valuable initial to uncover crucial insights for further investigation and policy design.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aglomeração / Serviço Hospitalar de Emergência / Aprendizado de Máquina / Tempo de Internação Limite: Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aglomeração / Serviço Hospitalar de Emergência / Aprendizado de Máquina / Tempo de Internação Limite: Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suécia