Your browser doesn't support javascript.
loading
The Role of Water Networks in Phosphodiesterase Inhibitor Dissociation and Kinetic Selectivity.
Blaazer, Antoni R; Singh, Abhimanyu K; Zara, Lorena; Boronat, Pierre; Bautista, Lady J; Irving, Steve; Majewski, Maciej; Barril, Xavier; Wijtmans, Maikel; Danielson, U Helena; Sterk, Geert Jan; Leurs, Rob; van Muijlwijk-Koezen, Jacqueline E; Brown, David G; de Esch, Iwan.
Afiliação
  • Blaazer AR; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Singh AK; University of Kent, School of Biosciences, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
  • Zara L; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Boronat P; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Bautista LJ; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Irving S; Charles River, UK, Ingram Building, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
  • Majewski M; University of Barcelona, IBUB, SPAIN.
  • Barril X; University of Barcelona, IBUB, SPAIN.
  • Wijtmans M; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Danielson UH; Uppsala University, Department of Chemistry BMC, SWEDEN.
  • Sterk GJ; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • Leurs R; Vrije Universiteit Amsterdam, Division of Medicinal Chemistry, NETHERLANDS, KINGDOM OF THE.
  • van Muijlwijk-Koezen JE; Vrije Universiteit Amsterdam, Division of Innovations in Human Health & Life Sciences, NETHERLANDS, KINGDOM OF THE.
  • Brown DG; University of Kent, School of Biosciences, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
  • de Esch I; Vrije Universiteit Amsterdam, Faculty of Sciences, De Boelelaan 1083a, 1081, Amsterdam, NETHERLANDS, KINGDOM OF THE.
ChemMedChem ; : e202400417, 2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39193819
ABSTRACT
In search of new opportunities to develop Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) inhibitors that have selectivity over the off-target human PDE4 (hPDE4), different stages of a fragment-growing campaign were studied using a variety of biochemical, structural, thermodynamic, and kinetic binding assays. Remarkable differences in binding kinetics were identified and this kinetic selectivity was explored with computational methods, including molecular dynamics and interaction fingerprint analyses. These studies indicate that a key hydrogen bond between GlnQ.50 and the inhibitors is exposed to a water channel in TbrPDEB1, leading to fast unbinding. This water channel is not present in hPDE4, leading to inhibitors with a longer residence time. The computer-aided drug design protocols were applied to a recently disclosed TbrPDEB1 inhibitor with a different scaffold and our results confirm that shielding this key hydrogen bond through disruption of the water channel represents a viable design strategy to develop more selective inhibitors of TbrPDEB1. Our work shows how computational protocols can be used to understand the contribution of solvent dynamics to inhibitor binding, and our results can be applied in the design of selective inhibitors for homologous PDEs found in related parasites.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemMedChem Assunto da revista: FARMACOLOGIA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemMedChem Assunto da revista: FARMACOLOGIA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article