Your browser doesn't support javascript.
loading
Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples.
Li, Fuyong; Liu, Junhong; Maldonado-Gómez, María X; Frese, Steven A; Gänzle, Michael G; Walter, Jens.
Afiliação
  • Li F; Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. fuyong@zju.edu.cn.
  • Liu J; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada. fuyong@zju.edu.cn.
  • Maldonado-Gómez MX; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
  • Frese SA; One Bio Inc., Sacramento, CA, 95833, USA.
  • Gänzle MG; Department of Nutrition, University of Nevada, Reno, NV, 89557, USA.
  • Walter J; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
Microbiome ; 12(1): 168, 2024 Sep 07.
Article em En | MEDLINE | ID: mdl-39244633
ABSTRACT

BACKGROUND:

Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples.

RESULTS:

Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing).

CONCLUSIONS:

Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Limosilactobacillus reuteri / Fezes / Microbioma Gastrointestinal Limite: Humans Idioma: En Revista: Microbiome Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Limosilactobacillus reuteri / Fezes / Microbioma Gastrointestinal Limite: Humans Idioma: En Revista: Microbiome Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China