Synapse-to-synapse plasticity variability balanced to generate input-wide constancy of transmitter release.
bioRxiv
; 2024 Sep 12.
Article
em En
| MEDLINE
| ID: mdl-39314438
ABSTRACT
Basal synaptic strength can vary greatly between synapses formed by an individual neuron because of diverse probabilities of action potential (AP) evoked transmitter release ( Pr ). Optical quantal analysis on large numbers of identified Drosophila larval glutamatergic synapses shows that short-term plasticity (STP) also varies greatly between synapses made by an individual type I motor neuron (MN) onto a single body wall muscle. Synapses with high and low P r and different forms and level of STP have a random spatial distribution in the MN nerve terminal, and ones with very different properties can be located within 200 nm of one other. While synapses start off with widely diverse basal P r at low MN AP firing frequency and change P r differentially when MN firing frequency increases, the overall distribution of P r remains remarkably constant due to a balance between the numbers of synapses that facilitate and depress as well as their degree of change and basal synaptic weights. This constancy in transmitter release can ensure robustness across changing behavioral conditions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
BioRxiv
Ano de publicação:
2024
Tipo de documento:
Article