Your browser doesn't support javascript.
loading
Changes in canine cortical and cancellous bone mechanical properties following immobilization and remobilization with exercise.
Kaneps, A J; Stover, S M; Lane, N E.
Afiliação
  • Kaneps AJ; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, USA. kanepsa@ccmail.orst.edu
Bone ; 21(5): 419-23, 1997 Nov.
Article em En | MEDLINE | ID: mdl-9356735
ABSTRACT
The purpose of this study was to assess cortical and cancellous bone responses to unilateral limb immobilization and, subsequently, to remobilization with exercise, in a young adult canine model. Right forelimbs of 14 1-2-year old mongrel dogs were immobilized in a non-weight-bearing position by a bandage for 16 weeks. Six control dogs were untreated. At 16 weeks, seven immobilized and three control dogs were euthanized. The remaining seven immobilized dogs began a recovery protocol consisting of 16 weeks of kennel confinement (without the right forelimb bandaged) followed by 16 weeks of treadmill exercise conducted three times per week. These seven dogs and three control dogs were euthanized at 48 weeks. Bone mineral density of the proximal radii was determined with dual-energy X-ray absorptiometry and humeral middiaphyseal cross-sectional areas were determined with computed tomography. Humeri were tested in cranio-caudal three-point bending to failure. Cancellous bone cores from the lateral humeral condyles had wet apparent density determined and were tested to failure in compression. Mechanical properties, bone density, and cross-sectional areas were compared between immobilized (right forelimb), contralateral weight bearing (left forelimb), and control forelimbs with Kruskal-Wallis and post hoc tests. At 16 weeks, bone mineral density, cortical load, yield, and stiffness as well as cancellous bone failure stress, yield stress, and modulus were significantly lower (p < 0.02) for immobilized limbs than control limbs. Immobilized limb cancellous bone mechanical properties were 28%-74% of control values, and cortical bone mechanical properties were 71%-98% of control values. After 32 weeks of remobilization, cortical and cancellous bone mechanical properties were not different from control values except that cortical bone failure stress and modulus were significantly higher (p < 0.01) between remobilized and control limbs. In summary, 16 weeks of forelimb immobilization was associated with significantly lower mechanical properties, and with greater differences in cancellous than cortical bone properties. Mechanical properties were not different from control values after 32 weeks of recovery that included 16 weeks of treadmill exercise.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Rádio (Anatomia) / Densidade Óssea Limite: Animals Idioma: En Revista: Bone Assunto da revista: METABOLISMO / ORTOPEDIA Ano de publicação: 1997 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Rádio (Anatomia) / Densidade Óssea Limite: Animals Idioma: En Revista: Bone Assunto da revista: METABOLISMO / ORTOPEDIA Ano de publicação: 1997 Tipo de documento: Article País de afiliação: Estados Unidos