Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 33(11): 12146-12163, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31370706

RESUMEN

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Asunto(s)
Proteínas Amiloidogénicas/química , Bacillus/fisiología , Proteínas Bacterianas/química , Biopelículas , Espectroscopía de Resonancia Magnética , Metaloproteasas/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
2.
Microorganisms ; 8(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348645

RESUMEN

Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.

3.
Sci Rep ; 10(1): 1000, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969664

RESUMEN

Bacterial physiology and adaptation are influenced by the exopolysaccharides (EPS) they produce. These polymers are indispensable for the assembly of the biofilm extracellular matrix in multiple bacterial species. In a previous study, we described the profound gene expression changes leading to biofilm assembly in B. cereus ATCC14579 (CECT148). We found that a genomic region putatively dedicated to the synthesis of a capsular polysaccharide (eps2) was overexpressed in a biofilm cell population compared to in a planktonic population, while we detected no change in the transcript abundance from another genomic region (eps1) also likely to be involved in polysaccharide production. Preliminary biofilm assays suggested a mild role for the products of the eps2 region in biofilm formation and no function for the products of the eps1 region. The aim of this work was to better define the roles of these two regions in B. cereus multicellularity. We demonstrate that the eps2 region is indeed involved in bacterial adhesion to surfaces, cell-to-cell interaction, cellular aggregation and biofilm formation, while the eps1 region appears to be involved in a kind of social bacterial motility. Consistent with these results, we further demonstrate using bacterial-host cell interaction experiments that the eps2 region is more relevant to the adhesion to human epithelial cells and the zebrafish intestine, suggesting that this region encodes a bacterial factor that may potentiate gut colonization and enhance pathogenicity against humans.


Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Matriz Extracelular de Sustancias Poliméricas/genética , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/genética , Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Genómica , Polisacáridos Bacterianos/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-31969984

RESUMEN

Biofilm formation is a strategy of many bacterial species to adapt to a variety of stresses and has become a part of infections, contaminations, or beneficial interactions. In this study, we demonstrate that profound physiological changes permit Bacillus cereus to switch from a floating to a sessile lifestyle, to undergo further maturation of the biofilm and to differentiate into the offensive or defensive features. We report that floating and biofilm cells are populations that differentiate metabolically, with members of each subpopulation developing different branches of certain metabolic pathways. Secondly, biofilm populations rearrange nucleotides, sugars, amino acids, and energy metabolism. Thirdly, this metabolic rearrangement coexists with: the synthesis of the extracellular matrix, sporulation, reinforcement of the cell wall, activation of the ROS detoxification machinery and production of secondary metabolites. This strategy contributes to defend biofilm cells from competitors. However, floating cells maintain a fermentative metabolic status that ensures a higher aggressiveness against hosts, evidenced by the production of toxins. The maintenance of the two distinct subpopulations is an effective strategy to face different environmental conditions found in the life styles of B. cereus.


Asunto(s)
Bacillus cereus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Adhesión Bacteriana , Línea Celular , Metabolismo Energético , Fermentación , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Esporas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA