Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Entropy (Basel) ; 23(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34681974

RESUMEN

Diabetic macular edema (DME) is the most common cause of irreversible vision loss in diabetes patients. Early diagnosis of DME is necessary for effective treatment of the disease. Visual detection of DME in retinal screening images by ophthalmologists is a time-consuming process. Recently, many computer-aided diagnosis systems have been developed to assist doctors by detecting DME automatically. In this paper, a new deep feature transfer-based stacked autoencoder neural network system is proposed for the automatic diagnosis of DME in fundus images. The proposed system integrates the power of pretrained convolutional neural networks as automatic feature extractors with the power of stacked autoencoders in feature selection and classification. Moreover, the system enables extracting a large set of features from a small input dataset using four standard pretrained deep networks: ResNet-50, SqueezeNet, Inception-v3, and GoogLeNet. The most informative features are then selected by a stacked autoencoder neural network. The stacked network is trained in a semi-supervised manner and is used for the classification of DME. It is found that the introduced system achieves a maximum classification accuracy of 96.8%, sensitivity of 97.5%, and specificity of 95.5%. The proposed system shows a superior performance over the original pretrained network classifiers and state-of-the-art findings.

2.
Front Med (Lausanne) ; 11: 1285067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633310

RESUMEN

Introduction: Acute heart failure (AHF) is a serious medical problem that necessitates hospitalization and often results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Unfortunately, there is not yet a fast and accurate laboratory test for identifying AHF. The purpose of this research is to apply the principles of explainable artificial intelligence (XAI) to the analysis of hematological indicators for the diagnosis of AHF. Methods: In this retrospective analysis, 425 patients with AHF and 430 healthy individuals served as assessments. Patients' demographic and hematological information was analyzed to diagnose AHF. Important risk variables for AHF diagnosis were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) feature selection. To test the efficacy of the suggested prediction model, Extreme Gradient Boosting (XGBoost), a 10-fold cross-validation procedure was implemented. The area under the receiver operating characteristic curve (AUC), F1 score, Brier score, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) were all computed to evaluate the model's efficacy. Permutation-based analysis and SHAP were used to assess the importance and influence of the model's incorporated risk factors. Results: White blood cell (WBC), monocytes, neutrophils, neutrophil-lymphocyte ratio (NLR), red cell distribution width-standard deviation (RDW-SD), RDW-coefficient of variation (RDW-CV), and platelet distribution width (PDW) values were significantly higher than the healthy group (p < 0.05). On the other hand, erythrocyte, hemoglobin, basophil, lymphocyte, mean platelet volume (MPV), platelet, hematocrit, mean erythrocyte hemoglobin (MCH), and procalcitonin (PCT) values were found to be significantly lower in AHF patients compared to healthy controls (p < 0.05). When XGBoost was used in conjunction with LASSO to diagnose AHF, the resulting model had an AUC of 87.9%, an F1 score of 87.4%, a Brier score of 0.036, and an F1 score of 87.4%. PDW, age, RDW-SD, and PLT were identified as the most crucial risk factors in differentiating AHF. Conclusion: The results of this study showed that XAI combined with ML could successfully diagnose AHF. SHAP descriptions show that advanced age, low platelet count, high RDW-SD, and PDW are the primary hematological parameters for the diagnosis of AHF.

4.
Front Hum Neurosci ; 18: 1376338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660009

RESUMEN

The increasing prevalence of mental disorders among youth worldwide is one of society's most pressing issues. The proposed methodology introduces an artificial intelligence-based approach for comprehending and analyzing the prevalence of neurological disorders. This work draws upon the analysis of the Cities Health Initiative dataset. It employs advanced machine learning and deep learning techniques, integrated with data science, statistics, optimization, and mathematical modeling, to correlate various lifestyle and environmental factors with the incidence of these mental disorders. In this work, a variety of machine learning and deep learning models with hyper-parameter tuning are utilized to forecast trends in the occurrence of mental disorders about lifestyle choices such as smoking and alcohol consumption, as well as environmental factors like air and noise pollution. Among these models, the convolutional neural network (CNN) architecture, termed as DNN1 in this paper, accurately predicts mental health occurrences relative to the population mean with a maximum accuracy of 99.79%. Among the machine learning models, the XGBoost technique yields an accuracy of 95.30%, with an area under the ROC curve of 0.9985, indicating robust training. The research also involves extracting feature importance scores for the XGBoost classifier, with Stroop test performance results attaining the highest importance score of 0.135. Attributes related to addiction, namely smoking and alcohol consumption, hold importance scores of 0.0273 and 0.0212, respectively. Statistical tests on the training models reveal that XGBoost performs best on the mean squared error and R-squared tests, achieving scores of 0.013356 and 0.946481, respectively. These statistical evaluations bolster the models' credibility and affirm the best-fit models' accuracy. The proposed research in the domains of mental health, addiction, and pollution stands to aid healthcare professionals in diagnosing and treating neurological disorders in both youth and adults promptly through the use of predictive models. Furthermore, it aims to provide valuable insights for policymakers in formulating new regulations on pollution and addiction.

5.
Bioengineering (Basel) ; 11(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790344

RESUMEN

The analysis of body motion is a valuable tool in the assessment and diagnosis of gait impairments, particularly those related to neurological disorders. In this study, we propose a novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment from video-recorded images. The proposed methodology encompasses three key aspects. First, we generate a novel one-dimensional representation of each silhouette image, termed a silhouette sinogram, by computing the distance and angle between the centroid and each detected boundary points. This process enables us to effectively utilize relative variations in motion at different angles to detect gait patterns. Second, a one-dimensional convolutional neural network (1D CNN) model is developed and trained by incorporating the consecutive silhouette sinogram signals of silhouette frames to capture spatiotemporal information via assisted knowledge learning. This process allows the network to capture a broader context and temporal dependencies within the gait cycle, enabling a more accurate diagnosis of gait abnormalities. This study conducts training and an evaluation utilizing the publicly accessible INIT GAIT database. Finally, two evaluation schemes are employed: one leveraging individual silhouette frames and the other operating at the subject level, utilizing a majority voting technique. The outcomes of the proposed method showed superior enhancements in gait impairment recognition, with overall F1-scores of 100%, 90.62%, and 77.32% when evaluated based on sinogram signals, and 100%, 100%, and 83.33% when evaluated based on the subject level, for cases involving two, four, and six gait abnormalities, respectively. In conclusion, by comparing the observed locomotor function to a conventional gait pattern often seen in healthy individuals, the recommended approach allows for a quantitative and non-invasive evaluation of locomotion.

6.
Diagnostics (Basel) ; 13(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37189517

RESUMEN

Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence.

7.
Diagnostics (Basel) ; 13(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189523

RESUMEN

Image segmentation has been one of the most active research areas in the last decade. The traditional multi-level thresholding techniques are effective for bi-level thresholding because of their resilience, simplicity, accuracy, and low convergence time, but these traditional techniques are not effective in determining the optimal multi-level thresholding for image segmentation. Therefore, an efficient version of the search and rescue optimization algorithm (SAR) based on opposition-based learning (OBL) is proposed in this paper to segment blood-cell images and solve problems of multi-level thresholding. The SAR algorithm is one of the most popular meta-heuristic algorithms (MHs) that mimics humans' exploration behavior during search and rescue operations. The SAR algorithm, which utilizes the OBL technique to enhance the algorithm's ability to jump out of the local optimum and enhance its search efficiency, is termed mSAR. A set of experiments is applied to evaluate the performance of mSAR, solve the problem of multi-level thresholding for image segmentation, and demonstrate the impact of combining the OBL technique with the original SAR for improving solution quality and accelerating convergence speed. The effectiveness of the proposed mSAR is evaluated against other competing algorithms, including the L'evy flight distribution (LFD), Harris hawks optimization (HHO), sine cosine algorithm (SCA), equilibrium optimizer (EO), gravitational search algorithm (GSA), arithmetic optimization algorithm (AOA), and the original SAR. Furthermore, a set of experiments for multi-level thresholding image segmentation is performed to prove the superiority of the proposed mSAR using fuzzy entropy and the Otsu method as two objective functions over a set of benchmark images with different numbers of thresholds based on a set of evaluation matrices. Finally, analysis of the experiments' outcomes indicates that the mSAR algorithm is highly efficient in terms of the quality of the segmented image and feature conservation, compared with the other competing algorithms.

8.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37238186

RESUMEN

Breast cancer is responsible for the deaths of thousands of women each year. The diagnosis of breast cancer (BC) frequently makes the use of several imaging techniques. On the other hand, incorrect identification might occasionally result in unnecessary therapy and diagnosis. Therefore, the accurate identification of breast cancer can save a significant number of patients from undergoing unnecessary surgery and biopsy procedures. As a result of recent developments in the field, the performance of deep learning systems used for medical image processing has showed significant benefits. Deep learning (DL) models have found widespread use for the aim of extracting important features from histopathologic BC images. This has helped to improve the classification performance and has assisted in the automation of the process. In recent times, both convolutional neural networks (CNNs) and hybrid models of deep learning-based approaches have demonstrated impressive performance. In this research, three different types of CNN models are proposed: a straightforward CNN model (1-CNN), a fusion CNN model (2-CNN), and a three CNN model (3-CNN). The findings of the experiment demonstrate that the techniques based on the 3-CNN algorithm performed the best in terms of accuracy (90.10%), recall (89.90%), precision (89.80%), and f1-Score (89.90%). In conclusion, the CNN-based approaches that have been developed are contrasted with more modern machine learning and deep learning models. The application of CNN-based methods has resulted in a significant increase in the accuracy of the BC classification.

9.
Front Oncol ; 13: 1230434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771437

RESUMEN

Background: The examination, counting, and classification of white blood cells (WBCs), also known as leukocytes, are essential processes in the diagnosis of many disorders, including leukemia, a kind of blood cancer characterized by the uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone. Blood smears can be chemically or microscopically studied to better understand hematological diseases and blood disorders. Detecting, identifying, and categorizing the many blood cell types are essential for disease diagnosis and therapy planning. A theoretical and practical issue. However, methods based on deep learning (DL) have greatly helped blood cell classification. Materials and Methods: Images of blood cells in a microscopic smear were collected from GitHub, a public source that uses the MIT license. An end-to-end computer-aided diagnosis (CAD) system for leukocytes has been created and implemented as part of this study. The introduced system comprises image preprocessing and enhancement, image segmentation, feature extraction and selection, and WBC classification. By combining the DenseNet-161 and the cyclical learning rate (CLR), we contribute an approach that speeds up hyperparameter optimization. We also offer the one-cycle technique to rapidly optimize all hyperparameters of DL models to boost training performance. Results: The dataset has been split into two sets: approximately 80% of the data (9,966 images) for the training set and 20% (2,487 images) for the validation set. The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte, and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and 2,499, respectively. The suggested method has 100% accuracy on the training set of images and 99.8% accuracy on the testing set. Conclusion: Using a combination of the recently developed pretrained convolutional neural network (CNN), DenseNet, and the one fit cycle policy, this study describes a technique of training for the classification of WBCs for leukemia detection. The proposed method is more accurate compared to the state of the art.

10.
Front Mol Biosci ; 10: 1254230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771457

RESUMEN

The development of novel medicines to treat autoimmune diseases and SARS-CoV-2 main protease (Mpro), a virus that can cause both acute and chronic illnesses, is an ongoing necessity for the global community. The primary objective of this research is to use CoMFA methods to evaluate the quantitative structure-activity relationship (QSAR) of a select group of chemicals concerning autoimmune illnesses. By performing a molecular docking analysis, we may verify previously observed tendencies and gain insight into how receptors and ligands interact. The results of the 3D QSAR models are quite satisfactory and give significant statistical results: Q_loo∧2 = 0.5548, Q_lto∧2 = 0.5278, R∧2 = 0.9990, F-test = 3,101.141, SDEC = 0.017 for the CoMFA FFDSEL, and Q_loo∧2 = 0.7033, Q_lto∧2 = 0.6827, Q_lmo∧2 = 0.6305, R∧2 = 0.9984, F-test = 1994.0374, SDEC = 0.0216 for CoMFA UVEPLS. The success of these two models in exceeding the external validation criteria used and adhering to the Tropsha and Glorbaikh criteria's upper and lower bounds can be noted. We report the docking simulation of the compounds as an inhibitor of the SARS-CoV-2 Mpro and an autoimmune disorder in this context. For a few chosen autoimmune disorder receptors (protein tyrosine phosphatase, nonreceptor type 22 (lymphoid) isoform 1 (PTPN22), type 1 diabetes, rheumatoid arthritis, and SARS-CoV-2 Mpro, the optimal binding characteristics of the compounds were described. According to their potential for effectiveness, the studied compounds were ranked, and those that demonstrated higher molecular docking scores than the reference drugs were suggested as potential new drug candidates for the treatment of autoimmune disease and SARS-CoV-2 Mpro. Additionally, the results of analyses of drug similarity, ADME (Absorption, Distribution, Metabolism, and Excretion), and toxicity were used to screen the best-docked compounds in which compound 4 scaled through. Finally, molecular dynamics (MD) simulation was used to verify compound 4's stability in the complex with the chosen autoimmune diseases and SARS-CoV-2 Mpro protein. This compound showed a steady trajectory and molecular characteristics with a predictable pattern of interactions. These findings suggest that compound 4 may hold potential as a therapy for autoimmune diseases and SARS-CoV-2 Mpro.

11.
Diagnostics (Basel) ; 13(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980412

RESUMEN

Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification of melanoma is still a challenging process for color images, despite the fact that numerous approaches have been proposed in the research that has been done. In this research, we present a comprehensive system for the efficient and precise classification of skin lesions. The framework includes preprocessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis, Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM) classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration (ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%, and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior for categorizing skin cancer types using the proposed innovative SDP.

12.
Theor Biol Med Model ; 9: 34, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22867264

RESUMEN

BACKGROUND: Discovering new biomarkers has a great role in improving early diagnosis of Hepatocellular carcinoma (HCC). The experimental determination of biomarkers needs a lot of time and money. This motivates this work to use in-silico prediction of biomarkers to reduce the number of experiments required for detecting new ones. This is achieved by extracting the most representative genes in microarrays of HCC. RESULTS: In this work, we provide a method for extracting the differential expressed genes, up regulated ones, that can be considered candidate biomarkers in high throughput microarrays of HCC. We examine the power of several gene selection methods (such as Pearson's correlation coefficient, Cosine coefficient, Euclidean distance, Mutual information and Entropy with different estimators) in selecting informative genes. A biological interpretation of the highly ranked genes is done using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, ENTREZ and DAVID (Database for Annotation, Visualization, and Integrated Discovery) databases. The top ten genes selected using Pearson's correlation coefficient and Cosine coefficient contained six genes that have been implicated in cancer (often multiple cancers) genesis in previous studies. A fewer number of genes were obtained by the other methods (4 genes using Mutual information, 3 genes using Euclidean distance and only one gene using Entropy). A better result was obtained by the utilization of a hybrid approach based on intersecting the highly ranked genes in the output of all investigated methods. This hybrid combination yielded seven genes (2 genes for HCC and 5 genes in different types of cancer) in the top ten genes of the list of intersected genes. CONCLUSIONS: To strengthen the effectiveness of the univariate selection methods, we propose a hybrid approach by intersecting several of these methods in a cascaded manner. This approach surpasses all of univariate selection methods when used individually according to biological interpretation and the examination of gene expression signal profiles.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Oncogenes , Inteligencia Artificial , Minería de Datos , Bases de Datos Genéticas/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA