RESUMEN
OBJECTIVES: To investigate the therapeutic role of calorie-restricted diet (CR) and raspberry ketone (RK) in non-alcoholic fatty liver disease (NAFLD) and the implication of sphingosine kinase-1 (SphK1)/sphingosine-1-phosphate (S1P) and toll-like receptor 4 (TLR4) signalling. METHODS: NAFLD was induced by feeding rats high-fat-fructose-diet (HFFD) for 6 weeks. Rats were then randomly assigned to three groups (n = 6 each); NAFLD group continued on HFFD for another 8 weeks. CR group was switched to CR diet (25% calorie restriction) for 8 weeks and RK group was switched to normal diet and received RK (55 mg/kg/day; orally) for 8 weeks. Another six rats were used as normal control. KEY FINDINGS: HFFD induced a state of NAFLD indicated by increased fat deposition in liver tissue along with dyslipidemia, elevated liver enzymes, oxidative stress and inflammation. Either CR diet or RK reversed these changes and decreased HFFD-induced elevation of hepatic SphK1, S1P, S1PR1 and TLR4. Of notice, RK along with a normal calorie diet was even better than CR alone in most studied parameters. CONCLUSIONS: SphK1/S1P and TLR4 are interconnected and related to the establishment of HFFD-induced NAFLD and can be modulated by RK. Supplementation of RK without calorie restriction to patients with NAFLD unable to follow CR diet to achieve their treatment goals would be a promising therapeutic modality.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratas , Dieta Alta en Grasa , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatos/metabolismo , Esfingosina/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
During the current era of the COVID-19 pandemic, the dissemination of Mucorales has been reported globally, with elevated rates of infection in India, and because of the high rate of mortality and morbidity, designing an effective vaccine against mucormycosis is a major health priority, especially for immunocompromised patients. In the current study, we studied shared Mucorales proteins, which have been reported as virulence factors, and after analysis of several virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH) and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected epitopes, ß-defensins adjuvant and PADRE peptide were included in the constructed vaccine to improve the stimulated immune response. Computational tools were used to estimate the physicochemical and immunological features of the proposed vaccine and validate its binding with TLR-2, where the output data of these assessments potentiate the probability of the constructed vaccine to stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach of potential vaccine construction and assessment through computational tools, and to the best of our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the immunoinformatics approach.