Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mol Evol ; 92(3): 338-357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809331

RESUMEN

Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.


Asunto(s)
Brucella abortus , Brucella melitensis , Genoma Bacteriano , Genómica , Filogenia , Brucella melitensis/genética , Brucella abortus/genética , Egipto , Genómica/métodos , Animales , Brucelosis/microbiología , Vacuna contra la Brucelosis/genética , Vacunas Bacterianas
2.
Funct Integr Genomics ; 23(2): 167, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204621

RESUMEN

Food plants play a crucial role in human survival, providing them essential nutrients. However, traditional breeding methods have not been able to keep up with the demands of the growing population. The improvement of food plants aims to increase yield, quality, and resistance to biotic and abiotic stresses. With CRISPR/Cas9, researchers can identify and edit key genes conferring desirable qualities in agricultural plants, including increased yield, enhanced product quality attributes, and increased tolerance to biotic and abiotic challenges. These modifications have enabled the creation of "smart crops" that exhibit rapid climatic adaptation, resistance to extreme weather conditions and high yield and quality. The use of CRISPR/Cas9 combined with viral vectors or growth regulators has made it possible to produce more efficient modified plants with certain conventional breeding methods. However, ethical and regulatory aspects of this technology must be carefully considered. Proper regulation and application of genome editing technology can bring immense benefits to agriculture and food security. This article provides an overview of genetically modified genes and conventional as well as emerging tools, including CRISPR/Cas9, that have been utilized to enhance the quality of plants/fruits and their products. The review also discusses the challenges and prospects associated with these techniques.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento , Humanos , Plantas Modificadas Genéticamente/genética , Fitomejoramiento/métodos , Edición Génica/métodos , Productos Agrícolas/genética , Agricultura , Genoma de Planta
3.
BMC Plant Biol ; 23(1): 121, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859186

RESUMEN

It is crucial to understand how targeted traits in a hybrid breeding program are influenced by gene activity and combining ability. During the three growing seasons of 2015, 2016, and 2017, a field study was conducted with twelve cotton genotypes, comprised of four testers and eight lines. Thirty-two F1 crosses were produced in the 2015 breeding season using the line x tester mating design. The twelve genotypes and their thirty-two F1 crosses were then evaluated in 2016 and 2017. The results demonstrated highly significant differences among cotton genotypes for all the studied traits, showing a wide range of genetic diversity in the parent genotypes. Additionally, the line-x-tester interaction was highly significant for all traits, suggesting the impact of both additive and non-additive variations in gene expression. Furthermore, the thirty-two cotton crosses showed high seed cotton output, lint cotton yield, and fiber quality, such as fiber length values exceeding 31 mm and a fiber strength above 10 g/tex. Accordingly, selecting lines and testers with high GCA effects and crosses with high SCA effects would be an effective approach to improve the desired traits in cotton and develop new varieties with excellent yield and fiber quality.


Asunto(s)
Gossypium , Fitomejoramiento , Egipto , Fenotipo , Hábitos
4.
BMC Plant Biol ; 22(1): 462, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167520

RESUMEN

To generate high-yielding cultivars with favorable fiber quality traits, cotton breeders can use information about combining ability and gene activity within a population to locate elite parents and potential F1 crosses. To this end, in the current study, twelve cotton parents (eight genotypes as female parents and four testers) and their F1 crosses obtained utilizing the linex tester mating design were evaluated for their general and specialized combining abilities (GCA and SCA, respectively) of yield traits. The findings showed that for all the investigated variables, variances owing to genotypes, parents, crosses, and parent vs cross showed extremely significant (P ≤ 0.01) differences. Additionally, throughout the course of two growing seasons, the mean squares for genotypes (parents and crosses) showed strong significance for all the variables under study. The greatest and most desired means for all the examined qualities were in the parent G.94, Pima S6, and tester G.86. The best crossings for the qualities examined were G.86 (G.89 × G.86), G.93 × Suvin, and G.86 × Suvin. The parents' Suvin, G89x G86 and TNB were shown to have the most desired general combining ability effects for seed cotton yield/plant, lint yield/plant, boll weight, number of bolls/plants, and lint index, while Suvin, G.96 and pima S6 were preferred for favored lint percentage. For seed cotton yield, lint percentage, boll weight, and number of bolls per plant per year, the cross-G.86 x (G.89 × G.86) displayed highly significant specific combining ability impacts. The crosses G.86 × Suvin, Kar x TNB, G.93 × Suvin, and G.93 × TNB for all the studied traits for each year and their combined were found to have highly significant positive heterotic effects relative to better parent, and they could be used in future cotton breeding programs for improving the studied traits.


Asunto(s)
Gossypium , Yoduro de Potasio , Fibra de Algodón , Cruzamientos Genéticos , Egipto , Gossypium/genética , Vigor Híbrido , Fitomejoramiento
5.
Mol Biol Rep ; 49(6): 5511-5520, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35484441

RESUMEN

BACKGROUND: Onion is an economically important vegetable cultivated worldwide on a large scale. Liberal exchange of germplasm and frequent selection caused narrow genetic diversity in most crops, including onion. Thus, it is essential to estimate and understand genetic diversity before launching of any breeding program. The current study was conducted to explore genetic diversity among 39 short-day onion genotypes (indigenous and exotic). METHODS AND RESULTS: All the genotypes were evaluated for various phenotypic traits by using single nucleotide polymorphism (SNP) genotyping based on KASPar assays. Principal component analysis (PCA) was performed to determine the variability among genotypes. The four principal components with eigenvalue greater than 1 accounted for 67.5656% variability for quantitative traits, whereas first five principal components with eigenvalue greater than 0.7 accounted for 86.24% variation among the genotypes for qualitative traits. The principal component analysis identified diverse traits including bulb weight, bulb diameter, plant height, number of survived plants and vitamin C. These traits were further analyzed through ANOVA (Analysis of Variance) following augmented block design to describe genotypic variability for selected traits. Onion genotypes showed significant variation for bulb weight, bulb diameter and Vitamin C. Genotypic clustering based on PCA showed that 15 indigenous genotypes were clustered with exotic genotypes (14) while remaining indigenous genotypes (10) were distant. A total of 30 SNPs were used for assessment of genetic diversity out of these, 24 SNPs were detected with polymorphic loci (0.8%, heterozygosity), while only six markers were with monomorphic sites (0.2% heterozygosity). Subsequently, population structure analysis revealed three different populations indicating significant variability. CONCLUSION: Conclusively, a significant similarity between exotic and a group of indigenous genotypes indicates direct adoption of exotic genotypes or their sister lines. A further broadening of the genetic base is required and could be done by crossing distant genotypes.


Asunto(s)
Cebollas , Polimorfismo de Nucleótido Simple , Ácido Ascórbico , Variación Genética/genética , Genotipo , Cebollas/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
6.
Mol Biol Rep ; 49(6): 5645-5657, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35655052

RESUMEN

BACKGROUND: DNA barcoding have been considered as a tool to facilitate species identification based on its simplicity and high-level accuracy in compression to the complexity and subjective biases linked to morphological identification of taxa. MaturaseK gene (MatK gene) of the chloroplast is very vital in the plant system which is involved in the group II intron splicing. The main objective of this study is to determine the relative utility of the "MatK" chloroplast gene for barcoding in 15 legume as a tool to facilitate species identification based on their simplicity and high-level accuracy linked to morphological identification of taxa. METHODS AND RESULTS: MatK gene sequences were submitted to GenBank and the accession numbers were obtained with sequence length ranging from 730 to 1545 nucleotides. These DNA sequences were aligned with database sequence using PROMALS server, Clustal Omega server and Bioedit program. Maximum likelihood and neighbor-joining algorithms were employed for constructing phylogeny. Overall, these results indicated that the phylogenetic tree analysis and the evolutionary distances of an individual dataset of each species were agreed with a phylogenetic tree of all each other consisting of two clades, the first clade comprising (Enterolobium contortisiliquum, Albizia lebbek), Acacia saligna, Leucaena leucocephala, Dichrostachys Cinerea, (Delonix regia, Parkinsonia aculeata), (Senna surattensis, Cassia fistula, Cassia javanica) and Schotia brachypetala were more closely to each other, respectively. The remaining four species of Erythrina humeana, (Sophora secundiflora, Dalbergia Sissoo, Tipuana Tipu) constituted the second clade. CONCLUSION: Moreover, their sequences could be successfully utilized in single nucleotide polymorphism or as part of the sequence as DNA fragment analysis utilizing polymerase chain reaction in plant systematic. Therefore, MatK gene is considered promising a candidate for DNA barcoding in the plant family Fabaceae and provides a clear relationship between the families.


Asunto(s)
Código de Barras del ADN Taxonómico , Fabaceae , Cloroplastos/genética , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Fabaceae/genética , Filogenia
7.
BMC Vet Res ; 18(1): 365, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195872

RESUMEN

Silver nanoparticles (AgNPs) are a powerful disinfectant, but little information is available on their potential use as a growth promoter and the safety margin of this. In this study, 480 1-day-old Cobb chicks were assigned to one control and three treated groups. The treated groups were supplemented with silver-doped silica nanoparticles (SiO2@AgNPs) at three dietary levels (8, 16, and 20 mg/kg diet) for 35 days. The results revealed no significant changes in the growth performance and oxidative parameters, and in most of the hematological and biochemical parameters among the control and treated groups. In contrast, dose-dependent adverse effects were exerted on the histopathological structure and immunohistochemical expression of CD45 in liver, kidneys, and lymphoid organs (spleen, bursa, and thymus). In addition, the relative weight of lymphoid organs and the serum levels of immunoglobulins M and G were significantly diminished. Moreover, the gene expression of proinflammatory cytokines (IL-ß1 and TNF-α) and the ultrastructural morphology in breast muscle showed significant dose-dependent alterations. It could be concluded that the dietary supplementation of SiO2@AgNPs at a level of 8 mg/kg diet or more has dose-dependent proinflammatory and immunosuppressive effects on broiler chickens.


Asunto(s)
Desinfectantes , Nanopartículas del Metal , Alimentación Animal/análisis , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Inmunoglobulinas , Dióxido de Silicio , Plata/farmacología , Factor de Necrosis Tumoral alfa
8.
Theor Appl Genet ; 134(4): 993-1005, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33606050

RESUMEN

KEY MESSAGE: Cmc4, a wheat curl mite resistance gene, was delimited to a 523 kb region and a diagnostic marker haplotype was identified for selecting Cmc4 in breeding programs. Wheat curl mite (WCM, Aceria tosichella Keifer) is a disastrous wheat pest in many wheat-growing regions worldwide. WCM not only directly affects wheat yield, but also transmits wheat streak mosaic virus. Growing WCM resistant cultivars is the most economical and sustainable method to reduce its damage. A hard winter wheat breeding line OK05312 (PI 670019) carries Cmc4 gene resistance to A. tosichella and has many desirable agronomic traits. To finely map Cmc4 in OK05312, two recombinant inbred line populations were developed from crosses between OK05312 and two susceptible cultivars, SD06165 and Jerry, genotyped using single nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing (GBS), and phenotyped for WCM resistance. Gene mapping using the two SNP maps confirmed Cmc4 in OK05312 that explained up to 68% of the phenotypic variation. Further analysis delimited Cmc4 to a ~ 523 kb region between SNPs SDOKSNP6314 and SDOKSNP2805 based on the Ae. tauschii reference genome. We developed 18 polymorphic Kompetitive Allele Specific PCR (KASP) markers using the sequences of GBS-SNPs in this region and 23 additional KASP markers based on the SNPs between the parents derived from 90K SNP chips. The KASP markers SDOKSNP6314 and SDOKSNP9699 are closest to Cmc4 and can be used to diagnose the presence of Cmc4 in wheat breeding programs. Haplotype analysis suggested that CmcTAM112 in TAM112 might be the same gene as Cmc4.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Animales , Resistencia a la Enfermedad/inmunología , Ácaros , Fenotipo , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Triticum/parasitología
9.
J Therm Biol ; 99: 103015, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34420647

RESUMEN

By reducing feed consumption, animals suffering from heat stress prefer to reduce their heat output. Heat exposure has also contributed to major adverse effects on the productive and reproductive performance of quails. Therefore, this research was intended to estimate the preventive function of licorice as a safe feed additive against the negative effects caused by heat stress conditions on laying quail productivity. A total number of 180 Japanese quail birds (120 females and 60 males), nine-weeks old were divided into five groups. Each group contained 36 birds in four replicates (nine birds) with completely randomized design. The dietary treatments were a basal diet without supplementation as control (T1), basal diet + 100 mg Tylosine kg-1 diet (T2), (T3), (T4) and (T5) fed basal diet + 250, 500 and 1000 mg licorice kg-1 diet, in respect. The results indicated that dietary supplementation with different feed additives had no significant effects on egg-laying rate, egg number, average egg weight, egg mass and feed conversion ratio compared with control. Also, different treatments showed no significant variations on serum IgG, total protein, globulin, albumin, creatinine, ALT and TAC and caused significant (P ≤ 0.05) improvement in IgM, AST, ALP, uric acid and MDA concentrations as compared to the control. Results indicated that total serum lipids, triglycerides, total cholesterol and LDL concentrations were significantly decreased due to different feed additives. However, HDL concentrations and HDL/LDL ratios were markedly increased by the other treatments than the control group. In addition, yolk total lipids were significantly (P ≤ 0.001) decreased with increasing licorice root powder's dietary levels compared with the control group. Also, a significant (P ≤ 0.01) reduction in egg yolk cholesterol level was observed in the group fed with 500 mg licorice compared to other treatments. In conclusion, fortified laying quail diets with licorice powder could be a useful strategy to alleviate adverse effects induced by heat stress as alternative to antibiotics on laying Japanese quail.


Asunto(s)
Antioxidantes/metabolismo , Coturnix/metabolismo , Yema de Huevo/efectos de los fármacos , Glycyrrhiza , Respuesta al Choque Térmico , Extractos Vegetales/administración & dosificación , Tilosina/administración & dosificación , Animales , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Coturnix/inmunología , Suplementos Dietéticos , Yema de Huevo/metabolismo , Femenino , Masculino
10.
Ecotoxicol Environ Saf ; 155: 76-85, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29510312

RESUMEN

The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function.


Asunto(s)
Cromosomas de las Plantas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Triticum/efectos de los fármacos , División Celular , Aberraciones Cromosómicas , Meristema/efectos de los fármacos , Meristema/genética , Índice Mitótico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Triticum/genética
11.
Sci Rep ; 14(1): 15547, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969662

RESUMEN

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Asunto(s)
Aspergillus flavus , Endófitos , Control Biológico de Vectores , Enfermedades de las Plantas , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitología , Solanum tuberosum/microbiología , Animales , Endófitos/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Control Biológico de Vectores/métodos , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Aspergillus flavus/efectos de los fármacos , Raíces de Plantas/parasitología , Raíces de Plantas/microbiología , Antinematodos/farmacología , Antinematodos/metabolismo , Trigonella/microbiología
12.
ACS Omega ; 9(8): 8632-8653, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434807

RESUMEN

Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.

13.
Gene ; 927: 148715, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909967

RESUMEN

As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.

14.
Sci Rep ; 14(1): 7723, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565894

RESUMEN

Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.


Asunto(s)
Fibra de Algodón , Gossypium , Fitomejoramiento , Cruzamientos Genéticos , Egipto , Gossypium/genética , Fenotipo , Sitios de Carácter Cuantitativo
15.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669462

RESUMEN

Soybean (Glycine max ) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Agricultura , Genómica , Genes de Plantas , Genoma de Planta , Sitios de Carácter Cuantitativo
16.
Sci Rep ; 13(1): 18048, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872286

RESUMEN

Nanotechnology is one of the fastest-growing markets, but developing eco-friendly products, their maximum production, stability, and higher yield is a challenge. In this study, silver nanoparticles were synthesized using an easily available resource, leaves extract of the Neem (Azadirachta indica) plant, as a reducing and capping agent, determined their effect on germination and growth of tomato plants. The maximum production of silver nanoparticles was noted at 70 °C after 3 h of reaction time while treating the 10 ml leaf extract of Neem plant with 10 ml of 1 mM silver nitrate. The impact of the extract preparation method and solvent type on the plant mediated fabrication of silver nanoparticles was also investigated. The UV-spectrophotometric analysis confirmed the synthesis of silver nanoparticles and showed an absorption spectrum within Δ420-440 nm range. The size of the fabricated silver nanoparticles was 22-30 nm. The functional groups such as ethylene, amide, carbonyl, methoxy, alcohol, and phenol attached to stabilize the nanoparticles were observed using the FTIR technique. SEM, EDX, and XRD analyses were performed to study the physiochemical characteristics of synthesized nanoparticles. Silver nanoparticles increased the germination rate of tomato seeds up to 70% while decreasing the mean germination time compared to the control. Silver nanoparticles applied at varying concentrations significantly increased the shoot length (25 to 80%), root length (10 to 60%), and fresh biomass (10 to 80%) biomass of the tomato plant. The production of total chlorophyll, carotenoid, flavonoids, soluble sugar, and protein was significantly increased in tomato plants treated with 5 and 10 ppm silver nanoparticles compared to the control. Green synthesized silver nanoparticles are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.


Asunto(s)
Azadirachta , Nanopartículas del Metal , Solanum lycopersicum , Extractos Vegetales/farmacología , Plata , Espectroscopía Infrarroja por Transformada de Fourier , Hojas de la Planta
17.
Food Sci Nutr ; 11(6): 2751-2766, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324856

RESUMEN

Milk contaminated with mycotoxins is a significant issue affecting human health, especially in infants. The current study aimed to investigate the presence of mycotoxins in milk collected from women farmers' vendors (WFV), and to evaluate certain herbal plant fibers as green mycotoxin binders. Moreover, explore the binding efficiency ratios of mycotoxins using shaking or soaking process incorporated with herbal extracts. Furthermore, compare the taste evaluations of tested milk are enriched with herbal extracts. Results indicated that the fumonisins were not detected in the collected cow milk samples but realized a 25% occurrence ratio in buffalo's milk samples. A high occurrence ratio of aflatoxin M1 (aflaM1) was observed in buffalo and cow milk samples. The soaking process of plant fibers in contaminated milk overnight significantly degrades and adsorbs mycotoxins particles. The shacking process incorporated with plant fibers exhibited more effectiveness in mycotoxins degradation than soaking or shacking processes alone. The speed of shacking process played an important role in the mycotoxin's binding process. All the tested plant fibers effectively reduced all mycotoxin presence in contaminated milk, especially green tea, during the soaking or shacking process. Moreover, the shacking process incorporated with plant fibers promoted and supported the mycotoxins degradation process.

18.
Front Plant Sci ; 13: 994785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388512

RESUMEN

In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.

19.
Plants (Basel) ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35567185

RESUMEN

Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix-loop-helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress.

20.
Biology (Basel) ; 11(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453738

RESUMEN

The potato is one of the most important and valuable crops in terms of consumption worldwide. However, abiotic stressors are the critical delimiters for the growth and productivity of potato. Invertase genes play key roles in carbon metabolism, plant development, and responses to stress stimuli. Therefore, a comprehensive genome-wide identification, characterization and expression analysis of invertase genes was performed in the potato. The current study identified 19 invertase genes, randomly distributed throughout the potato genome. To further elucidate their evolutionary, functional and structural relationship within family and with other plant species, we performed sequence and phylogenetic analysis, which segregated invertase genes into two main groups based on their sequence homology. A total of 11 genes are included in acidic invertases and 8 genes are in neutral or alkaline invertases, elucidating their functional divergence. Tissue specific expression analyses (RNA sequencing and qRT-PCR) of different plant tissues showed differential expression pattern. Invertase genes have higher expression in flower, leaf, root and shoot tissues, while under abiotic stress conditions, the expression of the invertase gene is significantly upregulated. Results of this study revealed that vacuolar and cell wall destined invertases are mainly the functional member genes of the invertase family. This study provides comprehensive data and knowledge about StINV genes in Solanum tuberosum for future genetic and epigenetic studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA