RESUMEN
The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medications for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behavioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus aluminum-induced memory impairment.
Asunto(s)
Enfermedad de Alzheimer , Animales , Ratas , Cilostazol/farmacología , Cloruro de Aluminio/efectos adversos , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Acetilcolinesterasa , Inhibidores de Fosfodiesterasa/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas , Modelos Animales de EnfermedadRESUMEN
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 µL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-ß1 (TGF-ß1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-ß1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.
Asunto(s)
Óxidos N-Cíclicos/farmacología , Ácido Yodoacético/efectos adversos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , NADPH Oxidasa 4/metabolismo , Osteoartritis de la Rodilla , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Ácido Yodoacético/farmacología , Masculino , Osteoartritis de la Rodilla/inducido químicamente , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Ratas , Ratas Wistar , Marcadores de SpinRESUMEN
The current study aimed to evaluate the role of cannabinoid receptors in the regulation of gastric acid secretion and oxidative stress in gastric mucosa. To fulfill this aim, gastric acid secretion stimulated with histamine (5 mg/kg, subcutaneous [SC]), 2-deoxy- d-glucose (D-G) (200 mg/kg, intravenous) or -carbachol (4 µg/kg, SC) in the 4-hour pylorus-ligated rats. The CB1R agonist ( N-arachidonoyl dopamine, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and carbachol but not in histamine, reduced pepsin content, and increased mucin secretion. Furthermore, it decreased malondialdehyde (MDA) and nitric oxide (NO) contents with an increase in glutathione (GSH) and paraoxonase 1 (PON-1). Meanwhile, CB2R antagonist (AM630, 1 mg/kg, SC) inhibited gastric acid secretion stimulated by D-G and reduced MDA and NO contents with an increase in GSH and PON-1. Meanwhile, CB1R antagonist rimonabant or CB2R agonist GW 405833 had no effect on stimulated gastric acid secretion. Therefore, both CB1R agonist and CB2R antagonist may exert antisecretory and antioxidant potential in the stomach.
Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Ácido Gástrico/metabolismo , Mucosa Gástrica/efectos de los fármacos , Animales , Mucosa Gástrica/metabolismo , Histamina , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Cannabinoides/efectos de los fármacosRESUMEN
One-third of cancer patients undergoing chemotherapy treatment often display symptoms of depression leading to poor adherence and decreased quality of life. Thus, this study aimed to investigate the possible protective effect of nebivolol against cisplatin-associated depressive symptoms in adult male rats. Nebivolol is a highly cardioselective ß-adrenergic receptor blocker that possesses endothelium-dependent vasodilator properties and antioxidant capacities. Animals were allocated into four groups. Group one was given aqueous solution of carboxymethyl cellulose and served as control, group two was given nebivolol (10 mg/kg p.o., daily), group three was given cisplatin (2 mg/kg i.p. once per week) for 10 consecutive weeks and group four was treated with cisplatin concomitantly with nebivolol as per above schedule. Cisplatin-treated rats showed an increase in both depressive-like behaviors in open-field and forced swimming tests. In addition, histopathological examination revealed cortical encephalomalacia along with hippocampal neuronal degeneration and kidney dysfunction. In parallel, cisplatin administration prominently reduced GABA and elevated glutamate levels in the cortical and hippocampal tissues. Furthermore, it resulted in a significant decline in cortical and hippocampal brain-derived neurotrophic factor and nitric oxide contents concomitantly with a marked decrease in endothelial- and an increase in inducible-nitric oxide synthase genes expression. On the other hand, treatment with nebivolol effectively mitigated the aforementioned cisplatin-associated behavioral, biochemical, and histopathological alterations without changing its antitumor activity as evidenced by sulforhodamine B cell survival assay. Taken together, our results suggest that nebivolol may offer a promising approach for alleviating depressive symptoms associated with the use of cisplatin.
Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Antineoplásicos , Cisplatino , Trastorno Depresivo/inducido químicamente , Trastorno Depresivo/prevención & control , Nebivolol/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Trastorno Depresivo/diagnóstico por imagen , Ácido Glutámico/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Natación/psicología , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one-time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 106 and 14-day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP-treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor-alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs-treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental/prevención & control , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Esclerosis Múltiple/prevención & control , Aloinjertos , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Interleucina-10/metabolismo , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Peroxidasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Gliptins have been recently shown to conquer neuronal degeneration in cell cultures via modulating glucagon-like peptide (GLP)-1. This peptide produced in the gut not only crosses the blood-brain barrier but is also synthesized in the brain and acts on GLP-1R exerting central anti-inflammatory and antiapoptotic effects, thus impeding neuronal damage. This study investigated the antiparkinsonian effect of vildagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor in a rat rotenone model targeting mainly the RAGE-NFκB/Nrf2-signaling pathways, to judge the potential anti-inflammatory/antioxidant effects of the drug. Vildagliptin markedly improved the motor performance in the open field and rotarod tests, effects that were emphasized by the accompanied reduction in striatal dopamine content. It modified the striatal energy level (ADP/ATP) associated with partial antagonism of body weight reduction. This incretin enhancer suppressed nuclear factor (NF)κB and, consequently, the downstream inflammatory mediator tumor necrosis factor-α. Normalization of receptor for advanced glycated end product (RAGE) is a main finding which justifies the anti-inflammatory effects of vildagliptin, together with hampering striatal inducible nitric oxide synthase, intracellular adhesion molecule-1 as well as myeloperoxidase. The antioxidant potential of vildagliptin was depicted as entailing reduction in thiobarbituric acid-reactive substances and the transcriptional factor Nrf-2 level. Vildagliptin guarded against neuronal demise through an antiapoptotic effect as reflected by the reduction in the mitochondrial matrix component cytochrome c and the key downstream executioner caspase-3. In conclusion, vildagliptin is endowed with various neuroprotective effects and thus can be a promising candidate for the management of Parkinson's disease. In the rat rotenone model of Parkinson's disease (PD), striatal RAGE/NFκB signaling was up-regulated associated with elevated levels of inflammatory, oxidative stress, and apoptotic mediators resulting in dopaminergic neurons death and hence motor impairment. Vildagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, blocked the RAGE/NFκB cascade exerting a potential antiparkinsonian effect. RAGE, receptor for advanced glycation end product; NFκB, nuclear factor κB; TNFα, tumor necrosis factor alpha; ICAM, intracellular adhesion molecule; iNOS, inducible nitric oxide synthase; MPO, myeloperoxidase.
Asunto(s)
Adamantano/análogos & derivados , Antioxidantes/metabolismo , Hipoglucemiantes/farmacología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nitrilos/farmacología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/prevención & control , Pirrolidinas/farmacología , Receptores Inmunológicos/efectos de los fármacos , Rotenona , Transducción de Señal/efectos de los fármacos , Desacopladores , Adamantano/farmacología , Animales , Apoptosis/efectos de los fármacos , Dopamina/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson Secundaria/metabolismo , Ratas , Ratas Wistar , Receptor para Productos Finales de Glicación Avanzada , VildagliptinaRESUMEN
Long standing rheumatoid arthritis (RA) is associated with testicular dysfunction and subfertility. Few studies have addressed the pathogenesis of testicular injury in RA and its modulation by effective agents. Thus, the current study aimed at evaluating the effects of two testosterone boosting agents; chrysin, a natural flavone and celecoxib, a selective COX-2 inhibitor, in testicular impairment in rats with adjuvant arthritis, an experimental model of RA. Chrysin (25 and 50mg/kg) and celecoxib (5mg/kg) were orally administered to Wistar rats once daily for 21days starting 1h before arthritis induction. Chrysin suppressed paw edema with comparable efficacy to celecoxib. More important, chrysin, dose-dependently and celecoxib attenuated the testicular injury via reversing lowered gonadosomatic index and histopathologic alterations with preservation of spermatogenesis. Both agents upregulated steroidogenic acute regulatory (StAR) mRNA expression and serum testosterone with concomitant restoration of LH and FSH. Furthermore, they suppressed inflammation via abrogation of myeloperoxidase, TNF-α and protein expression of COX-2 and iNOS besides elevation of IL-10. Alleviation of the testicular impairment was accompanied with suppression of oxidative stress via lowering testicular lipid peroxides and nitric oxide. With respect to apoptosis, both agents downregulated FasL mRNA expression and caspase-3 activity in favor of cell survival. For the first time, these findings highlight the protective effects of chrysin and celecoxib against testicular dysfunction in experimental RA which were mediated via boosting testosterone in addition to attenuation of testicular inflammation, oxidative stress and apoptosis. Generally, the 50mg/kg dose of chrysin exerted comparable protective actions to celecoxib.
Asunto(s)
Apoptosis/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología , Flavonoides/farmacología , Mediadores de Inflamación/metabolismo , Inflamación/prevención & control , Pirazoles/farmacología , Sulfonamidas/farmacología , Testículo/efectos de los fármacos , Administración Oral , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Caspasa 3/metabolismo , Celecoxib , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Relación Dosis-Respuesta a Droga , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Flavonoides/administración & dosificación , Hormona Folículo Estimulante/sangre , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Hormona Luteinizante/sangre , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pirazoles/administración & dosificación , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Espermatogénesis/efectos de los fármacos , Sulfonamidas/administración & dosificación , Testículo/metabolismo , Testículo/patología , Testículo/fisiopatología , Testosterona/sangre , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Chemobrain is a cognitive impairment observed in up to 75% of cancer patients treated with doxorubicin (DOX). Cognitive deficits associated with DOX are complex, and multiple interplay pathways contribute to memory impairment and the loss of concentration. Empagliflozin (EMPA), a sodium-glucose co-transporter-2 (SGLT-2) inhibitor with neuroprotective potential, has recently been elucidated because of its regulatory effects on oxidative stress and neuroinflammation. Thus, this study aimed to explore the protective mechanisms of EMPA in DOX-induced chemobrain. Rats were allocated to four groups: normal (NC), EMPA, DOX, and EMPA + DOX. Chemobrain was induced in the third and fourth groups by DOX (2 mg/kg, IP) on the 0th, 7th, 14th, and 21st days of the study, while EMPA was administered (10 mg/kg, PO) for 28 consecutive days in both the EMPA and EMPA + DOX groups. Behavioral and biochemical assessments were then performed. Rats treated with DOX exhibited significant memory, learning, and muscle coordination dysfunctions. Moreover, DOX boosted oxidative stress in the brain, as evidenced by elevated malondialdehyde (MDA) content together with decreased levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and reduced glutathione (GSH). Neuroinflammation was also observed as an upsurge of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB) (p65). Additionally, DOX diminished the expression of brain-derived neurotrophic factor (BDNF) and increased phosphoinositol-3-kinase (PI3K), phosphorylated-Akt (pAkt), and mammalian target of rapamycin (mTOR) content. EMPA exhibited potent neuroprotective potential in DOX-induced cognitive impairment, attributed to its antioxidant and neuroplasticity-enhancing properties and suppression of the PI3K/Akt/mTOR/NF-κB/TNF-α signaling pathway.
RESUMEN
PURPOSE: Lung fibrosis is a heterogeneous lung condition characterized by excessive accumulation of scarred tissue, leading to lung architecture destruction and restricted ventilation. The current work was conducted to examine the probable shielding influence of cinnamic acid against lung fibrosis induced by methotrexate. METHODS: Rats were pre-treated with oral administration of cinnamic acid (50 mg/kg/day) for 14 days, whereas methotrexate (14 mg/kg) was orally given on the 5th and 12th days of the experiment. Pirfenidone (50 mg/kg/day) was used as a standard drug. At the end of the experiment, oxidative parameters (malondialdehyde, myeloperoxidase, nitric oxide, and total glutathione) and inflammatory mediators (tumor necrosis factor-α and interleukin-8), as well as transforming growth factor-ß and collagen content, as fibrosis indicators, were measured in lung tissue. RESULTS: Our results revealed that cinnamic acid, as pirfenidone, effectively prevented the methotrexate-induced overt histopathological damage. This was associated with parallel improvements in oxidative, inflammatory, and fibrotic parameters measured. The outcomes of cinnamic acid administration were more or less the same as those of pirfenidone. In conclusion, pre-treatment with cinnamic acid protects against methotrexate-induced fibrosis, making it a promising prophylactic adjuvant therapy to methotrexate and protecting against its possible induction of lung fibrosis.
Asunto(s)
Cinamatos , Fibrosis Pulmonar , Piridonas , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Metotrexato/toxicidad , Pulmón , FibrosisRESUMEN
After oral administration of 100 mg/kg b.âw. (235.8 µmol/kg) salicortin to Wistar rats, peak serum concentrations of 1.43 mg/L (13.0 µM) catechol were detected after 0.5 h in addition to salicylic acid by HPLC-DAD after serum processing with ß-glucuronidase and sulphatase. Both metabolites could also be detected in the serum of healthy volunteers following oral administration of a willow bark extract (Salicis cortex, Salix spec., Salicaceae) corresponding to 240 mg of salicin after processing with both enzymes. In humans, the cmax (1.46 mg/L, 13.3 µM) of catechol was reached after 1.2 h. The predominant phase-II metabolite in humans and rats was catechol sulphate, determined by HPLC analysis of serum samples processed with only one kind of enzyme. Without serum processing with glucuronidase and sulphatase, no unconjugated catechol could be detected in human and animal serum samples. As catechol is described as an anti-inflammatory compound, these results may contribute to the elucidation of the mechanism of the action of willow bark extract.
Asunto(s)
Catecoles/sangre , Glucósidos/farmacocinética , Salix/química , Administración Oral , Animales , Catecoles/química , Cromatografía Líquida de Alta Presión , Glucósidos/administración & dosificación , Glucósidos/química , Humanos , Ratas , Ratas WistarRESUMEN
Benign prostatic hyperplasia (BPH) is a prevalent illness in older adults. It is well-recognized that testosterone is essential in the onset of BPH. Vildagliptin (Vilda), a dipeptidyl peptidase-IV inhibitor, has been shown to have anti-inflammatory and antioxidant effects. In this study, we studied the effects of vildagliptin on testosterone-induced BPH in rats and its underlying mechanisms. Forty male Wistar rats were allocated into four groups (n = 10): CTRL, Vilda, BPH, and BPH + Vilda groups. Our results revealed that vildagliptin treatment considerably lessened the prostate weight, prostate index, serum levels of prostate-specific antigen, 5α-reductase activity, and DHT levels compared to the testosterone group. Furthermore, vildagliptin treatment inhibited the expression of HMGB1, PI3K/Akt/NF-κB, and TNF-α signaling pathways in the prostate tissue of diseased rats. Additionally, vildagliptin treatment increased the expression of Nrf-2 and HO-1, reduced GSH levels, and lowered MDA levels. Besides, vildagliptin noticeably scaled up the level of cleaved caspase-3 enzyme and, conversely, the protein expression of proliferating cell nuclear antigen (PCNA). Correspondingly, vildagliptin counteracts testosterone-induced histological irregularities in rats' prostates. These findings suggest that vildagliptin may be a potential prophylactic approach to avoid BPH.
Asunto(s)
Proteína HMGB1 , Hiperplasia Prostática , Humanos , Ratas , Masculino , Animales , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/tratamiento farmacológico , Testosterona/metabolismo , Próstata/patología , FN-kappa B/metabolismo , Vildagliptina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína HMGB1/metabolismo , Hiperplasia/patología , Ratas Sprague-Dawley , Ratas Wistar , Extractos Vegetales/farmacología , Transducción de SeñalRESUMEN
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Asunto(s)
Proteína HMGB1 , Encefalopatía Hepática , Animales , Ratas , Amoníaco/metabolismo , Encefalopatía Hepática/inducido químicamente , Encefalopatía Hepática/tratamiento farmacológico , Proteína HMGB1/metabolismo , Lactoferrina/metabolismo , Hígado , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas Wistar , Tioacetamida/toxicidad , Receptor Toll-Like 4/metabolismoRESUMEN
Ischemic preconditioning (IPC), comprising exposure to sub-lethal short term ischemic events, has been shown to exert adaptive responses in many organs including the brain, thus guarding against exacerbations of ischemia reperfusion (IR). However, the mechanisms involved in the early phase of such a protection remain elusive; hence, the present study aimed to investigate the modulatory effect of preconditioning against IR induced injury on infarct size, free radicals, inflammatory/anti-inflammatory markers, caspase-3 and heat shock protein (HSP)70 in the rat hippocampus. To this end, male Wistar rats were divided into 3 groups, (1) sham operated (SO) control; (2) IPC, animals were subject to 3 episodes of ischemia (5 min) followed by reperfusion (10 min), afterwards rats underwent ischemia (15 min) followed by reperfusion (60 min); (3) IR animals were subjected to 15 min global ischemia followed by 60 min reperfusion. IR produced cerebral infarction accompanied by an imbalance in the hippocampal redox status, neutrophil infiltration, elevation in tumor necrosis factor (TNF)-α and prostaglandin (PG)E2, besides reduction in interleukin (IL)-10 and nitric oxide (NO) levels. IPC reverted all changes except for PGE2; however, neither HSP70 nor caspase-3 expression was altered following IR or IPC. The current study points thus towards the activation of the antioxidant system, anti-inflammatory pathway, as well as NO in the early phase of preconditioning protection.
Asunto(s)
Mediadores de Inflamación/fisiología , Precondicionamiento Isquémico , Estrés Oxidativo , Animales , Caspasa 3/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Inmunohistoquímica , Masculino , Ratas , Ratas WistarRESUMEN
Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet ß-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase â £ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3ß). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic ß-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.
Asunto(s)
Compuestos de Bencidrilo/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Glucósidos/farmacología , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteína Wnt3/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/etiología , Complicaciones de la Diabetes/etiología , Diabetes Mellitus Experimental/inducido químicamente , Neuropatías Diabéticas/etiología , Trastornos de la Memoria/etiología , Ratas , Transducción de Señal/efectos de los fármacosRESUMEN
Introduction: Rituximab (RTX) and recombinant human myelin basic protein (rhMBP) were proven to be effective in ameliorating the symptoms of multiple sclerosis (MS). In this study, a nanoformulation containing rhMBP with RTX on its surface (Nano-rhMBP-RTX) was prepared and investigated in comparison with other treatment groups to determine its potential neuro-protective effects on C57BL/6 mice after inducing experimental autoimmune encephalomyelitis (EAE). Methods: EAE was induced in the corresponding mice by injecting 100 µL of an emulsion containing complete Freund's adjuvant (CFA) and myelin oligodendrocyte glycoprotein (MOG). The subjects were weighed, scored and subjected to behavioural tests. After reaching a clinical score of 3, various treatments were given to corresponding EAE-induced and non-induced groups including rhMBP, RTX, empty nanoparticle prepared by poly (lactide-co-glycolide) (PLGA) or the prepared nanoformulation (Nano-rhMBP-RTX). At the end of the study, biochemical parameters were also determined as interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-10 (IL-10), interleukin-4 (IL-4), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-kB), brain derived neurotrophic factor (BDNF), 2', 3' cyclic nucleotide 3' phosphodiesterase (CNP) and transforming growth factor beta (TGF-ß) along with some histopathological analyses. Results: The results of the Nano-rhMBP-RTX group showed promising outcomes in terms of reducing the clinical scores, improving the behavioural responses associated with improved histopathological findings. Elevation in the levels of IL-4, CNP and TGF-ß was also noticed along with marked decline in the levels of NF-kB and TNF-α. Conclusion: Nano-rhMBP-RTX treated group ameliorated the adverse effects induced in the EAE model. The effectiveness of this formulation was demonstrated by the normalization of EAE-induced behavioral changes and aberrant levels of specific biochemical markers as well as reduced damage of hippocampal tissues and retaining higher levels of myelination.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Encefalomielitis Autoinmune Experimental/patología , Humanos , Interleucina-4 , Ratones , Ratones Endogámicos C57BL , Proteína Básica de Mielina , FN-kappa B , Rituximab/farmacología , Rituximab/uso terapéutico , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa/uso terapéuticoRESUMEN
The degree of neuroinflammation is correlated mainly with cognitive and motor dysfunctions associated with hepatic encephalopathy (HE). The current study was conducted to explore the possible protective potential of the antidiabetic drug; linagliptin (LNG; 10 or 20 mg/kg) against HE induced by thioacetamide (TAA) in rats. Animals received two consecutive intraperitoneal injections of TAA (200 mg/kg) on alternate days. Neurobehavioral tests were performed 24 h after the last injection, and rats were sacrificed 24 h later (48 h). The higher LNG dose more effectively protected against TAA-induced changes. Administration of LNG for 15 days before TAA notably mitigated TAA-induced acute liver injury and HE, as verified by the marked improvement in motor coordination, locomotor activity, and cognition function. LNG maintained both brain and liver weight indices and retracted the hyperammonemia with a prominent suppression in liver transaminases. This was accompanied by an evident modulation of hepatic and hippocampal oxidative stress markers; GSH and MDA. LNG attenuated both liver and hippocampal pro-inflammatory cytokine; IL-1ß while augmented the anti-inflammatory one; IL-10. It noticeably reduced hepatic and hippocampal COX-2 and TNF-α and maintained hepatic and brain architectures. It also induced a marked decrease in the inflammation-regulated transcription factor, C/EBP-ß, with a profound increase in hippocampi's anti-inflammatory chemokine, CX3CL1/Fractalkine. LNG modulated TAA-induced disturbances in hippocampal amino acids; glutamate, and GABA with a significant increase in hippocampal BDNF. In conclusion, the regulatory effect of LNG on neuroinflammatory signaling underlines its neuroprotective effect against progressive encephalopathy accompanying acute liver injury.
Asunto(s)
Encefalopatía Hepática/tratamiento farmacológico , Linagliptina/farmacología , Animales , Conducta Animal , Encéfalo/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Quimiocina CX3CL1/metabolismo , Citocinas/metabolismo , Encefalopatía Hepática/inducido químicamente , Encefalopatía Hepática/fisiopatología , Inflamación/metabolismo , Hígado/metabolismo , Pruebas de Función Hepática , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Tioacetamida/farmacología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
This study set out to optimize simvastatin (SV) in lipid nanoparticles (SLNs) to improve bioavailability, efficacy and alleviate adverse effects. Simvastatin-loaded solid lipid nanoparticles (SV-SLNs) were prepared by hot-melt ultrasonication method and optimized by box-Behnken experimental design. Sixty Wister albino rats were randomly assigned into six groups and treated daily for 16 weeks: control group, the group fed with 20 g of high-fat diet (HFD), group treated with vehicle (20 mg/kg, P.O.) for last four weeks, group treated with HFD and SV (20 mg/kg, P.O.) / or SV-SLNs (20 mg/kg/day, P.O.) / or SV-SLNs (5 mg/kg, P.O.) at last four weeks. Blood, liver tissues, and quadriceps muscles were collected for biochemical analysis, histological and immunohistochemical assays. The optimized SV-SLNS showed a particle-size 255.2 ± 7.7 nm, PDI 0.31 ± 0.09, Zeta-potential - 19.30 ± 3.25, and EE% 89.81 ± 2.1%. HFD showed severe changes in body weight liver functions, lipid profiles, atherogenic index (AIX), albumin, glucose, insulin level, alkaline phosphatase as well as muscle injury, oxidative stress biomarkers, and protein expression of caspase-3. Simvastatin treatment in animals feed with HFD showed a significant improvement of all tested parameters, but it was associated with hepatotoxicity, myopathy, and histological changes in quadriceps muscles. SV-SLNs exhibited a significant improvement of all biochemical, histological examinations, and immunohistochemical assays. SV-SLNs (5 mg/kg) treatment returns all measured parameters to control itself. These results represent that SV-SLNs is a promising candidate as a drug carrier for delivering SV with maximum efficacy and limited adverse reaction.
Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hiperlipidemias/tratamiento farmacológico , Lípidos/química , Enfermedades Musculares/tratamiento farmacológico , Nanopartículas/química , Simvastatina/farmacología , Animales , Disponibilidad Biológica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Masculino , Tamaño de la Partícula , Ratas , Ratas WistarRESUMEN
Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1ß) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1ß, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.
RESUMEN
OBJECTIVES: This study aimed to determine the impact of cannabinoid agonists and antagonists on the mucosal lesion progress in the stomach induced by water-immersion restraint stress (WIRS). MATERIALS AND METHODS: Rats subjected to WIRS for 4 hr were treated with Dimethyl sulfoxide (DMSO), CBR1 agonist (NADA, 1 mg/kg), CBR1 antagonist (Rimonabant, 1 mg/kg), CBR2 agonist (GW405833 1 mg/kg) or CBR2 antagonist (AM630, 1 mg/kg SC) 30 min before WIRS. Microscopic lesions, oxidative stress, inflammatory cytokines biomarkers, and (Myeloperoxidase) MPO in gastric tissues were determined. RESULTS: Results indicated development of severe gastric lesions with a substantial increase in the contents of (nitric oxide) NO, (malondialdehyde) MDA, (interleukin-1 beta) IL-1ß, MPO, (tumor necrosis factor-alpha) TNF-α, and a significant fall in the content of GSH and the activity of PON-1 after WIRS. CONCLUSION: Treatment with NADA and AM630 protected gastric tissues against ulcers as demonstrated by a decrease in the contents of MDA, TNF-α, MPO, and IL-1ß along with an increase in the content of PON-1 activity and GSH in the stomach tissues. On the other hand, treatment with SR141716A or GW405833 showed no protective effects on ulcers development. It seems that cannabinoids exert their antioxidant potential and anti-inflammatory effects against WIRS-induced gastric ulcers by activation of CB1R.