Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(12): 8877-8886, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31746618

RESUMEN

Biocompatible surfaces are important for basic and applied research in life science with experiments ranging from the organismal to the single-molecule level. For the latter, examples include the translocation of kinesin motor proteins along microtubule cytoskeletal filaments or the study of DNA-protein interactions. Such experiments often employ single-molecule fluorescence or force microscopy. In particular for force measurements, a key requirement is to prevent nonspecific interactions of biomolecules and force probes with the surface, while providing specific attachments that can sustain loads. Common approaches to reduce nonspecific interactions include supported lipid bilayers or PEGylated surfaces. However, fluid lipid bilayers do not support loads and PEGylation may require harsh chemical surface treatments and have limited reproducibility. Here, we developed and applied a supported solid lipid bilayer (SSLB) as a platform for specific, load bearing attachments with minimal nonspecific interactions. Apart from single-molecule fluorescence measurements, anchoring molecules to lipids in the solid phase enabled us to perform force measurements of molecular motors and overstretch DNA. Furthermore, using a heating laser, we could switch the SSLB to its fluid state allowing for manipulation of anchoring points. The assay had little nonspecific interactions, was robust, reproducible, and time-efficient, and required less hazardous and toxic chemicals for preparation. In the long term, we expect that SSLBs can be widely employed for single-molecule fluorescence microscopy, force spectroscopy, and cellular assays in mechanobiology.


Asunto(s)
ADN/química , Cinesinas/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Microtúbulos , Modelos Químicos , Microtúbulos/química , Microtúbulos/ultraestructura
2.
Opt Express ; 26(11): 14499-14513, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877486

RESUMEN

Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.

3.
Science ; 371(6530)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33574186

RESUMEN

Kinesin motors are essential for the transport of cellular cargo along microtubules. How the motors step, detach, and cooperate with each other is still unclear. To dissect the molecular motion of kinesin-1, we developed germanium nanospheres as ultraresolution optical trapping probes. We found that single motors took 4-nanometer center-of-mass steps. Furthermore, kinesin-1 never detached from microtubules under hindering load conditions. Instead, it slipped on microtubules in microsecond-long, 8-nanometer steps and remained in this slip state before detaching or reengaging in directed motion. Unexpectedly, reengagement and thus rescue of directed motion was more frequent. Our observations broaden our knowledge on the mechanochemical cycle and slip state of kinesin. This state and rescue need to be accounted for to understand long-range transport by teams of motors.


Asunto(s)
Germanio , Cinesinas/química , Cinesinas/metabolismo , Nanosferas , Pinzas Ópticas , Adenosina Trifosfato/metabolismo , Transporte Biológico , Cinética , Membrana Dobles de Lípidos , Microtúbulos/metabolismo , Modelos Biológicos , Imagen Individual de Molécula
4.
STAR Protoc ; 1(3): 100177, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377071

RESUMEN

Dynamic microtubules are essential for many processes in the lives of eukaryotic cells. To study and understand the mechanisms of microtubule dynamics and regulation, in vitro reconstitution with purified components has proven a vital approach. Imaging microtubule dynamics can be instructive for a given species, isoform composition, or biochemical modification. Here, we describe two methods that visualize microtubule dynamics at high speed and high contrast: (1) total internal reflection fluorescence microscopy and (2) label-free interference reflection microscopy. For complete details on the use and execution of this protocol, please refer to Hirst et al. (2020).


Asunto(s)
Imagenología Tridimensional , Microscopía de Interferencia/métodos , Microtúbulos/metabolismo , Coloración y Etiquetado , Animales , Fluorescencia , Polimerizacion , Silanos/química , Tubulina (Proteína)/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA