Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Immunity ; 37(1): 35-47, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22658523

RESUMEN

Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.


Asunto(s)
Actinas/metabolismo , Bacterias/inmunología , Caspasas/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Multimerización de Proteína , Factores Despolimerizantes de la Actina/metabolismo , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Caspasa 1/deficiencia , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasas/deficiencia , Caspasas/genética , Caspasas Iniciadoras , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagosomas/microbiología , Fosforilación
2.
J Biol Chem ; 293(23): 8956-8968, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29700113

RESUMEN

Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrPC to its pathological isoform PrPSc Subsequent aggregation and accumulation of PrPSc in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Autophagy is a basic cellular degradation and recycling machinery that also affects exosomal processing, but whether autophagy controls release of prions in exosomes is unclear. Our work investigated the effect of autophagy modulation on exosomal release of prions and how this interplay affects cellular prion infection. Exosomes isolated from cultured murine central neuronal cells (CAD5) and peripheral neuronal cells (N2a) contained prions as shown by immunoblotting for PrPSc, prion-conversion activity, and cell culture infection. We observed that autophagy stimulation with the mTOR inhibitor rapamycin strongly inhibited exosomal prion release. In contrast, inhibition of autophagy by wortmannin or CRISPR/Cas9-mediated knockout of the autophagy protein Atg5 (autophagy-related 5) greatly increased the release of exosomes and exosome-associated prions. We also show that a difference in exosomal prion release between CAD5 and N2a cells is related to differences at the level of basal autophagy. Taken together, our results indicate that autophagy modulation can control lateral transfer of prions by interfering with their exosomal release. We describe a novel role of autophagy in the prion life cycle, an understanding that may provide useful targets for containing prion diseases.


Asunto(s)
Autofagia , Exosomas/metabolismo , Neuronas/metabolismo , Proteínas Priónicas/metabolismo , Animales , Línea Celular , Exosomas/patología , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
3.
J Biol Chem ; 288(3): 2049-58, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23148214

RESUMEN

Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Infecciones por Burkholderia/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Proteínas de Choque Térmico/genética , Macrófagos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores/metabolismo , Infecciones por Burkholderia/complicaciones , Infecciones por Burkholderia/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/fisiología , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Transgénicos , Viabilidad Microbiana , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteína Sequestosoma-1 , Transfección , Ubiquitina/genética , Ubiquitina/metabolismo
4.
Eur J Immunol ; 43(5): 1333-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23420491

RESUMEN

Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant replicate in WT mice and their bone marrow-derived macrophages. This is the first L. pneumophila mutant to be found to replicate in WT bone marrow-derived macrophages other than the Fla mutant. Less legA9 mutant-containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila-containing vacuole for autophagy uptake.


Asunto(s)
Autofagia/inmunología , Proteínas Bacterianas/genética , Legionella pneumophila/genética , Macrófagos/microbiología , Mutación , Vacuolas/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas Bacterianas/inmunología , Células Cultivadas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune/genética , Legionella pneumophila/inmunología , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/inmunología , Ratones , Fagosomas/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Unión Proteica , Proteína Sequestosoma-1 , Ubiquitina/metabolismo , Ubiquitinación , Vacuolas/metabolismo , Vacuolas/microbiología
5.
J Immunol ; 188(7): 3469-77, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22368275

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1ß, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1ß processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1ß release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1ß release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1ß response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1ß processing and release.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Burkholderia cenocepacia/inmunología , Proteínas del Citoesqueleto/fisiología , Inflamasomas/fisiología , Monocitos/microbiología , Apoptosis , Sistemas de Secreción Bacterianos/genética , Burkholderia cenocepacia/genética , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/fisiología , Línea Celular/microbiología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Humanos , Interleucina-1beta/metabolismo , Monocitos/metabolismo , Fagocitosis , Pirina , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/fisiología
6.
J Biol Chem ; 286(5): 3203-8, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21097506

RESUMEN

The ability of Legionella pneumophila to cause pneumonia is determined by its capability to evade the immune system and grow within human monocytes and their derived macrophages. Human monocytes efficiently activate caspase-1 in response to Salmonella but not to L. pneumophila. The molecular mechanism for the lack of inflammasome activation during L. pneumophila infection is unknown. Evaluation of the expression of several inflammasome components in human monocytes during L. pneumophila infection revealed that the expression of the apoptosis-associated speck-like protein (ASC) and the NOD-like receptor NLRC4 are significantly down-regulated in human monocytes. Exogenous expression of ASC maintained the protein level constant during L. pneumophila infection and conveyed caspase-1 activation and restricted the growth of the pathogen. Further depletion of ASC with siRNA was accompanied with improved NF-κB activation and enhanced L. pneumophila growth. Therefore, our data demonstrate that L. pneumophila manipulates ASC levels to evade inflammasome activation and grow in human monocytes. By targeting ASC, L. pneumophila modulates the inflammasome, the apoptosome, and NF-κB pathway simultaneously.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Enfermedad de los Legionarios/inmunología , Monocitos/microbiología , Apoptosis , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas de Unión al Calcio , Caspasa 1 , Proteínas del Citoesqueleto/inmunología , Humanos , Inflamación , Monocitos/inmunología , FN-kappa B/metabolismo , Transducción de Señal
7.
Biochem Biophys Res Commun ; 424(2): 221-7, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22728038

RESUMEN

Cystic fibrosis (CF) is accompanied with heightened inflammation worsened by drug resistant Burkholderia cenocepacia. Human CF macrophage responses to B. cenocepacia are poorly characterized and variable in the literature. Therefore, we examined human macrophage responses to the epidemic B. cenocepacia J2315 strain in order to identify novel anti-inflammatory targets. Peripheral blood monocyte derived macrophages were obtained from 23 CF and 27 non-CF donors. Macrophages were infected with B. cenocepacia J2315 and analyzed for cytokines, cytotoxicity, and microscopy. CF macrophages demonstrated significant increases in IL-1ß, IL-10, MCP-1, and IFN-γ production in comparison to non-CF controls. CF patients on prednisone exhibited globally diminished cytokines compared to controls and other CF patients. CF macrophages also displayed increased bacterial burden and cell death. In conclusion, CF macrophages demonstrate exaggerated IL-1ß, IL-10, MCP-1, and IFN-γ production and cell death during B. cenocepacia infection. Treatment with corticosteroids acutely suppressed cytokine responses.


Asunto(s)
Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Macrófagos/inmunología , Adolescente , Corticoesteroides/farmacología , Adulto , Apoptosis , Quimiocina CCL2/metabolismo , Niño , Preescolar , Fibrosis Quística/inmunología , Femenino , Humanos , Lactante , Inflamación/microbiología , Inflamación/patología , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Lisosomas/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Adulto Joven
8.
Mol Neurobiol ; 57(5): 2206-2219, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31981074

RESUMEN

Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.


Asunto(s)
Guanabenzo/análogos & derivados , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Priones/efectos de los fármacos , Scrapie/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Guanabenzo/administración & dosificación , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Metformina/administración & dosificación , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Neuroblastoma/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 1/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Scrapie/patología
9.
Prion ; 13(1): 185-196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-31578923

RESUMEN

Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.


Asunto(s)
Autofagia/efectos de los fármacos , Celulosa/uso terapéutico , Proteínas PrPSc/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Sirolimus/uso terapéutico , Animales , Celulosa/análogos & derivados , Sinergismo Farmacológico , Éteres/química , Éteres/uso terapéutico , Femenino , Ratones , Proteínas PrPSc/antagonistas & inhibidores , Enfermedades por Prión/metabolismo , Proteolisis/efectos de los fármacos
10.
Curr Opin Pharmacol ; 44: 46-52, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31096117

RESUMEN

Prions use cellular machineries for autocatalytic propagation by conformational conversion of the cellular prion protein into the pathological isoform PrPSc. Autophagy is a basic cellular degradation and recycling machinery that delivers cargo to lysosomes. Increase of autophagic flux in cells results in enhanced delivery of PrPSc in late endosomes to lysosomal degradation, providing a therapeutic target for prion diseases. Application of chemical enhancers of autophagy to cell or mouse models of prion infection provided a solid experimental proof-of-concept for this anti-prion strategy. In addition, increasing autophagy also reduces exosomal release of prions and transfer of prion infectivity between cells. Taken together, pharmacological induction of autophagy is a promising target for containing prion diseases, and ideal candidate for future combination therapies.


Asunto(s)
Autofagia , Enfermedades por Prión/tratamiento farmacológico , Animales , Exosomas , Humanos
11.
Sci Rep ; 7(1): 17565, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242534

RESUMEN

Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrPC) into the pathologic isoform PrPSc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrPSc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrPSc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.


Asunto(s)
Autofagia/efectos de los fármacos , Celecoxib/análogos & derivados , Proteínas PrPSc/metabolismo , Pirazoles/farmacología , Sulfonamidas/farmacología , Animales , Línea Celular Tumoral , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Pirazoles/química , Sulfonamidas/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-23750338

RESUMEN

Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Legionella pneumophila/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Animales , Carga Bacteriana , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/fisiología , Ratones , Ratones Endogámicos C57BL
13.
Front Microbiol ; 2: 18, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21713115

RESUMEN

The apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) is an adaptor molecule that mediates inflammatory and apoptotic signals. Legionella pneumophila is an intracellular bacterium and the causative agent of Legionnaire's pneumonia. L. pneumophila is able to cause pneumonia in immuno-compromised humans but not in most inbred mice. Murine macrophages that lack the ability to activate caspase-1, such as caspase(-1-/-) and Nlrc4(-/-) allow L. pneumophila infection. This permissiveness is attributed mainly to the lack of active caspase-1 and the absence of its down stream substrates such as caspase-7. However, the role of Asc in control of L. pneumophila infection in mice is unclear. Here we show that caspase-1 is moderately activated in Asc(-/-) macrophages and that this limited activation is required and sufficient to restrict L. pneumophila growth. Moreover, Asc-independent activation of caspase-1 requires bacterial flagellin and is mainly detected in cellular extracts but not in culture supernatants. We also demonstrate that the depletion of Asc from permissive macrophages enhances bacterial growth by promoting L. pneumophila-mediated activation of the NF-κB pathway and decreasing caspase-3 activation. Taken together, our data demonstrate that L. pneumophila infection in murine macrophages is controlled by several mechanisms: Asc-independent activation of caspase-1 and Asc-dependent regulation of NF-κB and caspase-3 activation.

14.
Autophagy ; 7(11): 1359-70, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21997369

RESUMEN

Cystic fibrosis (CF) is the most common inherited lethal disease of Caucasians which results in multi organ dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1ß. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type macrophages but not in ΔF508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 (ΔF508) macrophages than in WT macrophages. An autophagosome is a compartment that engulfs non-functional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and ΔF508 macrophages. However, autophagy dysfunction is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, Rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.


Asunto(s)
Autofagia/efectos de los fármacos , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia cenocepacia/fisiología , Fibrosis Quística/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Sirolimus/farmacología , Sirolimus/uso terapéutico , Animales , Autofagia/genética , Infecciones por Burkholderia/complicaciones , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/patología , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/crecimiento & desarrollo , Burkholderia cenocepacia/ultraestructura , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Interleucina-1beta/biosíntesis , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/microbiología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Viabilidad Microbiana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Fagosomas/efectos de los fármacos , Fagosomas/microbiología , Fagosomas/ultraestructura , Neumonía/complicaciones , Neumonía/microbiología , ARN Interferente Pequeño/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA