Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Res Notes ; 13(1): 220, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299487

RESUMEN

OBJECTIVE: Kampala Industrial and Business Park (KIBP) is one of the premier and the most successful Ugandan industrial complexes that impact the inner Murchison bay of Lake Victoria. The current study aimed at evaluating the effect of industrial effluents on the physicochemical and microbiological quality of water taken from four different sites along Namanve stream in KIBP, Wakiso district, Uganda. RESULTS: All the water quality parameters were below WHO maximum permissible limits except turbidity, electrical conductivity and Escherichia coli count. Mean values of the monitored water quality parameters increased from the point of effluent discharge downstream of Namanve stream.


Asunto(s)
Industrias , Ríos/química , Contaminación Química del Agua , Agua/química , Agua/normas , Uganda , Microbiología del Agua/normas
2.
PLoS Negl Trop Dis ; 4(3): e636, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20300518

RESUMEN

BACKGROUND: Glossina fuscipes fuscipes, a riverine species of tsetse, is the main vector of both human and animal trypanosomiasis in Uganda. Successful implementation of vector control will require establishing an appropriate geographical scale for these activities. Population genetics can help to resolve this issue by characterizing the extent of linkage among apparently isolated groups of tsetse. METHODOLOGY/PRINCIPAL FINDINGS: We conducted genetic analyses on mitochondrial and microsatellite data accumulated from approximately 1000 individual tsetse captured in Uganda and neighboring regions of Kenya and Sudan. Phylogeographic analyses suggested that the largest scale genetic structure in G. f. fuscipes arose from an historical event that divided two divergent mitochondrial lineages. These lineages are currently partitioned to northern and southern Uganda and co-occur only in a narrow zone of contact extending across central Uganda. Bayesian assignment tests, which provided evidence for admixture between northern and southern flies at the zone of contact and evidence for northerly gene flow across the zone of contact, indicated that this structure may be impermanent. On the other hand, microsatellite structure within the southern lineage indicated that gene flow is currently limited between populations in western and southeastern Uganda. Within regions, the average F(ST) between populations separated by less than 100 km was less than approximately 0.1. Significant tests of isolation by distance suggested that gene flow is ongoing between neighboring populations and that island populations are not uniformly more isolated than mainland populations. CONCLUSIONS/SIGNIFICANCE: Despite the presence of population structure arising from historical colonization events, our results have revealed strong signals of current gene flow within regions that should be accounted for when planning tsetse control in Uganda. Populations in southeastern Uganda appeared to receive little gene flow from populations in western or northern Uganda, supporting the feasibility of area wide control in the Lake Victoria region by the Pan African Tsetse and Trypanosomiasis Eradication Campaign.


Asunto(s)
Vectores de Enfermedades , Moscas Tse-Tse/clasificación , Moscas Tse-Tse/genética , Animales , Análisis por Conglomerados , ADN Mitocondrial/genética , Flujo Génico , Geografía , Humanos , Kenia , Repeticiones de Microsatélite , Filogenia , Sudán , Uganda
3.
PLoS Negl Trop Dis ; 2(5): e242, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509474

RESUMEN

BACKGROUND: Glossina fuscipes fuscipes is the major vector of human African trypanosomiasis, commonly referred to as sleeping sickness, in Uganda. In western and eastern Africa, the disease has distinct clinical manifestations and is caused by two different parasites: Trypanosoma brucei rhodesiense and T. b. gambiense. Uganda is exceptional in that it harbors both parasites, which are separated by a narrow 160-km belt. This separation is puzzling considering there are no restrictions on the movement of people and animals across this region. METHODOLOGY AND RESULTS: We investigated whether genetic heterogeneity of G. f. fuscipes vector populations can provide an explanation for this disjunct distribution of the Trypanosoma parasites. Therefore, we examined genetic structuring of G. f. fuscipes populations across Uganda using newly developed microsatellite markers, as well as mtDNA. Our data show that G. f. fuscipes populations are highly structured, with two clearly defined clusters that are separated by Lake Kyoga, located in central Uganda. Interestingly, we did not find a correlation between genetic heterogeneity and the type of Trypanosoma parasite transmitted. CONCLUSIONS: The lack of a correlation between genetic structuring of G. f. fuscipes populations and the distribution of T. b. gambiense and T. b. rhodesiense indicates that it is unlikely that genetic heterogeneity of G. f. fuscipes populations explains the disjunct distribution of the parasites. These results have important epidemiological implications, suggesting that a fusion of the two disease distributions is unlikely to be prevented by an incompatibility between vector populations and parasite.


Asunto(s)
Insectos Vectores/genética , Moscas Tse-Tse/genética , Animales , ADN Mitocondrial/genética , Variación Genética/genética , Genética de Población , Humanos , Repeticiones de Microsatélite/genética , Tripanosomiasis Africana/transmisión , Uganda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA