Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(2): e9670, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124173

RESUMEN

RATIONALE: Multicellular tumor spheroids (MCTSs) that reconstitute the metabolic characteristics of in vivo tumor tissue may facilitate the discovery of molecular biomarkers and effective anticancer therapies. However, little is known about how cancer cells adapt their metabolic changes in complex three-dimensional (3D) microenvironments. Here, using the two-dimensional (2D) cell model as control, the metabolic phenotypes of glioma U87MG multicellular tumor spheroids were systematically investigated based on static metabolomics and dynamic fluxomics analysis. METHODS: A liquid chromatography-mass spectrometry-based global metabolomics and lipidomics approach was adopted to survey the cellular samples from 2D and 3D culture systems, revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, the metabolic pathways altered in glioma MCTSs were found using 13 C6 -glucose as a tracer to map the metabolic flux of glycolysis, the tricarboxylic acid (TCA) cycle, de novo nucleotide synthesis, and de novo lipid biosynthesis in the MCTS model. RESULTS: We found nine metabolic pathways as well as glycerolipid, glycerophospholipid and sphingolipid metabolism to be predominantly altered in glioma MCTSs. The reduced nucleotide metabolism, amino acid metabolism and glutathione metabolism indicated an overall lower cellular activity in MCTSs. Through dynamic fluxomics analysis in the MCTS model, we found that cells cultured in MCTSs exhibited increased glycolysis activity and de novo lipid biosynthesis activity, and decreased the TCA cycle and de novo purine nucleotide biosynthesis activity. CONCLUSIONS: Our study highlights specific, altered biochemical pathways in MCTSs, emphasizing dysregulation of energy metabolism and lipid metabolism, and offering novel insight into metabolic events in glioma MCTSs.


Asunto(s)
Glioma , Cromatografía Líquida con Espectrometría de Masas , Humanos , Metabolómica/métodos , Técnicas de Cultivo de Célula , Nucleótidos , Lípidos , Microambiente Tumoral
2.
J Asian Nat Prod Res ; 26(1): 59-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38031435

RESUMEN

A total of 65 phenolic acid compounds were annotated or identified by UHPLC-MS/MS method, among them, 17 p-HAP (p-hydroxyacetophenone) glycosides were firstly targeted profiled based on molecular networking. Their characteristic product ions of MS/MS spectra were found and examined on the guideline of targeted isolation. As a result, a new p-HAP glycoside was thus obtained and determined as 2'-O-caffeoyl-p-HAP-4-O-ß-D-glucopyranoside (33) based on 1D and 2D NMR data. Besides, multicomponents quantitative analysis indicated the distinct regional variability in chemicals distribution of A. japonica, and meanwhile, the contents of p-HAP glycosides from A. japonica were higher than those in A. capillaris as a whole, which further suggested the potential medicinal value of A. japonica.


Asunto(s)
Artemisia , Espectrometría de Masas en Tándem , Glicósidos/química , Artemisia/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Estructura Molecular
3.
J Proteome Res ; 22(1): 36-46, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36564034

RESUMEN

Fatty aldehydes (FALs) are involved in various biological processes, and their abnormal metabolism is related to the occurrence and development of neurological diseases. Because of their low ionization efficiency, methods for in situ detection and mass spectrometry imaging (MSI) analysis of FALs remain underreported. On-tissue chemical tagging of hardly ionizable target analytes with easily ionized moieties can improve ionization efficiency and detection sensitivity in MSI experiments. In this study, an on-tissue chemical derivatization-air-flow-assisted desorption electrospray ionization-MSI method was developed to visualize FALs in the rat brain. The method showed high sensitivity and specificity, allowing the use of in situ high-resolution MS3 to identify FALs. The methodology was applied to investigate the region-specific distribution of FALs in the brains of control and diabetic encephalopathy (DE) rats. In DE rats, FALs were found to be significantly enriched in various brain regions, especially in the cerebral cortex, hippocampus, and amygdala. Thus, increased FAL levels and oxidative stress occurred in a region-dependent manner, which may contribute to cognitive function deficits in DE. In summary, we provide a novel method for the in situ detection of FALs in biological tissues as well as new insights into the potential pathogenesis of DE.


Asunto(s)
Diabetes Mellitus , Espectrometría de Masa por Ionización de Electrospray , Ratas , Animales , Espectrometría de Masa por Ionización de Electrospray/métodos , Aldehídos , Encéfalo/diagnóstico por imagen , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
4.
Anal Chem ; 95(24): 9164-9172, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37264941

RESUMEN

Zebrafish (Danio rerio) represent an effective model biological material for human disease research, even for personalized precision medicine. Thus, it is necessary to fully characterize their molecular information in order to obtain a global metabolic profile. Here, a spatially resolved metabolomics method for whole-body zebrafish analysis was established based on an air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) system. Using the optimized experimental conditions, the method provided high-quality visual distribution information for >1000 functional metabolites, thereby organ-specific metabolites characterizing nine regions were obtained comprehensively, including the eyes, brain, gill, heart, liver, kidney, intestine, muscle, and spinal cord. Then, combined with metabolic pathway analysis, a global metabolic network with in situ information on zebrafish was mapped for the first time. We also tried to use the recently published MSI database to annotate the metabolites in this study; however, the annotation rate was only 33.7 and 10.4% in positive and negative modes, respectively. This further demonstrated the necessity of establishing a suitable AFADESI-MSI method for zebrafish samples. These results offer comprehensive and in-depth molecular information about zebrafish at the metabolic level, which facilitates the use of zebrafish models to understand metabolic reprogramming in human diseases and the development of zebrafish disease models.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Pez Cebra , Animales , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Metabolómica/métodos , Metaboloma , Diagnóstico por Imagen
5.
Anal Chem ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629515

RESUMEN

On-tissue chemical derivatization combined with mass spectrometry imaging (MSI) can effectively visualize low-abundance and poorly ionizable molecules in biological tissues. Owing to the lack of an effective chemical reaction environment on the tissue surface, the development of direct one-step derivatization reactions is challenging. Herein, we present a two-step reaction involving on-tissue chemical oxidation followed by derivatization combined with airflow-assisted desorption electrospray ionization-MSI, enabling the visualization of primary and secondary hydroxyl-containing metabolites (PSHMs) within the tissue sections. This method indirectly achieved on-tissue derivatization by combining two reactions. Hydroxyl was converted to carbonyl using chemical oxidants, and subsequently, carbonyl was derived using Girard's P reagent. Using this methodology, 169 PSHMs, including hydroxy fatty acids (OH-FAs), fatty alcohols (FOHs), and sterol lipids, were detected and imaged in the tissues of rat brain, kidney, and liver. Moreover, we found that the abundant PSHMs, fatty aldehydes, and oxo fatty acids were significantly dysregulated in the liver and kidney tissues of type 2 diabetic rats; in particular, OH-FAs and FOHs were remarkably up-regulated in the diabetic rat liver tissues. The aberrations of these oxidative metabolites provide insights into the understanding of the molecular pathological mechanism of diabetes. This study demonstrates a novel, two-step reaction strategy for on-tissue derivatization with the analysis of previously inaccessible molecules using MSI.

6.
Anal Chem ; 95(17): 6775-6784, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37021399

RESUMEN

Metabolic perturbation score-based mass spectrometry imaging (MPS-MSI) is proposed to reveal the spatially resolved functional metabolic response associated with disease progression or drug action including metabolism pathways, species, biofunction, or biotransformation. The MPS-MSI enables the exploration of therapeutic or adverse effects, regional heterogeneous responses to drug treatment, possible molecular mechanisms, and even drug potential targets. MPS-MSI was demonstrated to be a promising molecular imaging tool not only for efficacy and safety evaluation but also for molecular mechanism investigation at the early stage of drug research and development.


Asunto(s)
Imagen Molecular , Espectrometría de Masas/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Anal Chem ; 95(51): 18691-18696, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38088904

RESUMEN

Spatially resolved lipidomics is pivotal for detecting and interpreting lipidomes within spatial contexts using the mass spectrometry imaging (MSI) technique. However, comprehensive and efficient lipid identification in MSI remains challenging. Herein, we introduce a high-coverage, database-driven approach combined with air-flow-assisted desorption electrospray ionization (AFADESI)-MSI to generate spatial lipid profiles across whole-body mice. Using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we identified 2868 unique lipids in the serum and various organs of mice. Subsequently, we systematically evaluated the distinct ionization properties of the lipids between LC-MS and MSI and created a detailed MSI database containing 14 123 ions. This method enabled the visualization of aberrant fatty acid and phospholipid metabolism across organs in a diabetic mouse model. As a powerful extension incorporated into the MSIannotator tool, our strategy facilitates the rapid and accurate annotation of lipids, providing new research avenues for probing spatially resolved heterogeneous metabolic changes in response to diseases.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Espectrometría de Masas en Tándem , Lipidómica/métodos , Cromatografía Liquida , Ácidos Grasos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
Biomed Chromatogr ; 37(9): e5661, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37186388

RESUMEN

Anise fruit (Aniseed) has been used for many years as a traditional medicine in various countries throughout the world; however, the chemical material basis of Aniseed water extract (AWE) has not been examined in detail, limiting our understanding of its pharmacological mechanism and methods for practical quality control. A high-efficiency and high-sensitivity LC-triple time-of-flight tandem mass spectrometry (MS/MS) analysis method using data processing method combined with product ion and neutral loss filtering for systematic screening and identification of the constituents of AWE was established. A quantitative method was established by using LC-MS/MS with multiple reaction monitoring for 10 min to determine the concentration of 17 representative constituents. A total of 89 compounds were discovered in AWE, of which 31 were confirmed by the reference standards, while 24 were found in Aniseed for the first time. The qualification analysis results showed that chlorogenic acids and luteolin derivatives were the major compounds. The linearity, sensitivity, precision, stability, repeatability, and accuracy of the method were verified, which demonstrated that the method could meet the requirements for quantification. This work contributes to a better understanding of the chemical material basis of Aniseed and assists in the development of effective analytical methods for natural medicines.

9.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570761

RESUMEN

"Gray zone" thyroid follicular tumors are difficult to diagnose, especially when distinguishing between benign follicular thyroid adenoma (FTA) and malignant carcinoma (FTC). Thus, proper classification of thyroid follicular diseases may improve clinical prognosis. In this study, the diagnostic performance of metabolite enzymes was evaluated using imaging mass spectrometry to distinguish FTA from FTC and determine the association between metabolite enzyme expression with thyroid follicular borderline tumor diagnosis. Air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFAIDESI-MSI) was used to build a classification model for thyroid follicular tumor characteristics among 24 samples. We analyzed metabolic enzyme marker expression in an independent validation set of 133 cases and further evaluated the potential biological behavior of 19 thyroid borderline lesions. Phospholipids and fatty acids (FAs) were more abundant in FTA than FTC (p < 0.001). The metabolic enzyme panel, which included FA synthase and Ca2+-independent PLA2, was further validated in follicular thyroid tumors. The marker combination showed optimal performance in the validation group (area under the ROC, sensitivity, and specificity: 73.6%, 82.1%, and 60.6%, respectively). The findings indicate that AFAIDESI-MSI, in combination with low metabolic enzyme expression, could play a role in the diagnosis of thyroid follicular borderline tumors for strict follow-up.


Asunto(s)
Adenocarcinoma Folicular , Neoplasias de la Tiroides , Humanos , Adenocarcinoma Folicular/diagnóstico por imagen , Adenocarcinoma Folicular/metabolismo , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/metabolismo , Diagnóstico por Imagen , Espectrometría de Masa por Ionización de Electrospray
10.
Anal Chem ; 94(20): 7286-7294, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35548855

RESUMEN

Rapid and accurate metabolite annotation in mass spectrometry imaging (MSI) can improve the efficiency of spatially resolved metabolomics studies and accelerate the discovery of reliable in situ disease biomarkers. To date, metabolite annotation tools in MSI generally utilize isotopic patterns, but high-throughput fragmentation-based identification and biological and technical factors that influence structure elucidation are active challenges. Here, we proposed an organ-specific, metabolite-database-driven approach to facilitate efficient and accurate MSI metabolite annotation. Using data-dependent acquisition (DDA) in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to generate high-coverage product ions, we identified 1620 unique metabolites from eight mouse organs (brain, liver, kidney, heart, spleen, lung, muscle, and pancreas) and serum. Following the evaluation of the adduct form difference of metabolite ions between LC-MS and airflow-assisted desorption electrospray ionization (AFADESI)-MSI and deciphering organ-specific metabolites, we constructed a metabolite database for MSI consisting of 27,407 adduct ions. An automated annotation tool, MSIannotator, was then created to conduct metabolite annotation in the MSI dataset with high efficiency and confidence. We applied this approach to profile the spatially resolved landscape of the whole mouse body and discovered that metabolites were distributed across the body in an organ-specific manner, which even spanned different mouse strains. Furthermore, the spatial metabolic alteration in diabetic mice was delineated across different organs, exhibiting that differentially expressed metabolites were mainly located in the liver, brain, and kidney, and the alanine, aspartate, and glutamate metabolism pathway was simultaneously altered in these three organs. This approach not only enables robust metabolite annotation and visualization on a body-wide level but also provides a valuable database resource for underlying organ-specific metabolic mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Iones/química , Metabolómica/métodos , Ratones , Espectrometría de Masas en Tándem/métodos
11.
Anal Chem ; 94(21): 7500-7509, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35584098

RESUMEN

Large-scale and long-period metabolomics study is more susceptible to various sources of systematic errors, resulting in nonreproducibility and poor data quality. A reliable and robust batch correction method removes unwanted systematic variations and improves the statistical power of metabolomics data, which undeniably becomes an important issue for the quality control of metabolomics. This study proposed a novel data normalization and integration method, Norm ISWSVR. It is a two-step approach via combining the best-performance internal standard correction with support vector regression normalization, comprehensively removing the systematic and random errors and matrix effects. This method was investigated in three untargeted lipidomics or metabolomics datasets, and the performance was further evaluated systematically in comparison with that of 11 other normalization methods. As a result, Norm ISWSVR decreased the data's median cross-validated relative standard deviation (cvRSD), increased the correlation between QCs, improved the classification accuracy of biomarkers, and was well-compatible with quantitative data. More importantly, Norm ISWSVR also allows a low frequency of QCs, which could significantly decrease the burden of a large-scale experiment. Correspondingly, Norm ISWSVR favorably improves the data quality of large-scale metabolomics data.


Asunto(s)
Lipidómica , Metabolómica , Biomarcadores , Metabolómica/métodos , Control de Calidad
12.
Anal Chem ; 94(40): 13927-13935, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36173386

RESUMEN

Mass spectrometry imaging (MSI), which quantifies the underlying chemistry with molecular spatial information in tissue, represents an emerging tool for the functional exploration of pathological progression. Unsupervised machine learning of MSI datasets usually gives an overall interpretation of the metabolic features derived from the abundant ions. However, the features related to the latent lesions are always concealed by the abundant ion features, which hinders precise delineation of the lesions. Herein, we report a data-driven MSI data segmentation approach for recognizing the hidden lesions in the heterogeneous tissue without prior knowledge, which utilizes one-step prediction for feature selection to generate function-specific segmentation maps of the tissue. The performance and robustness of this approach are demonstrated on the MSI datasets of the ischemic rat brain tissues and the human glioma tissue, both possessing different structural complexity and metabolic heterogeneity. Application of the approach to the MSI datasets of the ischemic rat brain tissues reveals the location of the ischemic penumbra, a hidden zone between the ischemic core and the healthy tissue, and instantly discovers the metabolic signatures related to the penumbra. In view of the precise demarcation of latent lesions and the screening of lesion-specific metabolic signatures in tissues, this approach has great potential for in-depth exploration of the metabolic organization of complex tissue.


Asunto(s)
Glioma , Animales , Diagnóstico por Imagen , Humanos , Iones , Espectrometría de Masas/métodos , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Rapid Commun Mass Spectrom ; 36(12): e9292, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35266203

RESUMEN

RATIONALE: Cardiovascular disease, as a multifactorial disease caused by genetics and environment, has emerged as a leading cause of mortality. The discovery of metabolic biomarkers for the clinical diagnosis, early warning and elucidation of the molecular pathogenesis of cardiovascular disease, using metabolomics, has attracted broad interest. Therefore, this work aimed to develop a sensitive and reliable targeted metabolomics method for the quantification of cardiovascular disease-related biomarkers in plasma. METHODS: The method was developed and validated using ultrahigh-performance liquid chromatography augmented with tandem mass spectrometry (UHPLC/MS/MS). The LC conditions and MS parameters were optimized using selected reaction monitoring scanning mode to high-throughput and sensitive separation, and could detect 20 metabolic biomarkers in a single experiment. And the linearity, selectivity, accuracy, precision, stability and recovery of the developed method were assessed according to the Bioanalytical Method Validation guidelines of the United States Food and Drug Administration. RESULTS: These quantified metabolic biomarkers are involved in pathways such as aromatic amino acid catabolism (e.g. phenylalanine, tryptophan, tyrosine), trimethylamine N-oxide (TMAO) biosynthesis (e.g. TMAO, choline, carnitine, betaine) and histidine metabolism (e.g. histidine), among others. All analytes exhibited excellent linearities with coefficients of determination greater than 0.99. Accuracies deviated by less than 15% for medium- and high-concentration samples and less than 20% for low-concentration samples, with intra- and inter-day precisions of 1.12-14.12% and 0.30-13.74%, respectively. Recoveries and stabilities also met the analysis requirements of biological samples. CONCLUSIONS: The targeted metabolomics method was shown to have a powerful ability to accurately analyze metabolic biomarkers, thereby providing valuable information for large-scale biomarker validation and clarifying the potential material basis of cardiovascular disease for clinical diagnosis or early warning.


Asunto(s)
Enfermedades Cardiovasculares , Espectrometría de Masas en Tándem , Biomarcadores , Enfermedades Cardiovasculares/diagnóstico , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Histidina , Humanos , Metabolómica , Espectrometría de Masas en Tándem/métodos
14.
Proc Natl Acad Sci U S A ; 116(1): 52-57, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559182

RESUMEN

Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.


Asunto(s)
Metabolómica/métodos , Neoplasias/metabolismo , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectrometría de Masas , Neoplasias/enzimología , Neoplasias/patología , Pirrolina Carboxilato Reductasas/metabolismo , Uridina Fosforilasa/metabolismo
15.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209182

RESUMEN

The pathological diagnosis of benign and malignant follicular thyroid tumors remains a major challenge using the current histopathological technique. To improve diagnosis accuracy, spatially resolved metabolomics analysis based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique was used to establish a molecular diagnostic strategy for discriminating four pathological types of thyroid tumor. Without any specific labels, numerous metabolite features with their spatial distribution information can be acquired by AFADESI-MSI. The underlying metabolic heterogeneity can be visualized in line with the cellular heterogeneity in native tumor tissue. Through micro-regional feature extraction and in situ metabolomics analysis, three sets of metabolic biomarkers for the visual discrimination of benign follicular adenoma and differentiated thyroid carcinomas were discovered. Additionally, the automated prediction of tumor foci was supported by a diagnostic model based on the metabolic profile of 65 thyroid nodules. The model prediction accuracy was 83.3% when a test set of 12 independent samples was used. This diagnostic strategy presents a new way of performing in situ pathological examinations using small molecular biomarkers and provides a model diagnosis for clinically indeterminate thyroid tumor cases.


Asunto(s)
Biomarcadores de Tumor , Metabolómica , Técnicas de Diagnóstico Molecular , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Metaboloma , Metabolómica/métodos , Pronóstico , Curva ROC , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Neoplasias de la Tiroides/etiología
16.
J Proteome Res ; 20(7): 3567-3579, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34137614

RESUMEN

Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.


Asunto(s)
Encefalopatías , Diabetes Mellitus Experimental , Animales , Metabolómica , Ratas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estreptozocina
17.
Anal Chem ; 93(46): 15373-15380, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34748327

RESUMEN

The improvement of on-tissue chemical derivatization for mass spectrometry imaging (MSI) of low-abundance and/or poorly ionizable functional molecules in biological tissue without delocalization is challenging. Here, we developed a novel hydrogel-assisted chemical derivatization (HCD) approach coupled with airflow-assisted desorption electrospray ionization (AFADESI)-MSI, allowing for enhanced visualization of inaccessible molecules in biological tissues. The derivatization reagent Girard's P (GP) reagent was creatively packaged into a hydrogel to form HCD blocks that have reactivity to carbonyl compounds as well as the feasibility of "cover/uncover" contact mode with tissue sections. The HCD blocks provided a favorable liquid microenvironment for the derivatization reaction and reduced matrix effects from derivatization reagents and tissue without obvious molecular migration, thus improving the derivatization efficiency. With this methodology, unusual carbonyl metabolites, including 166 fatty aldehydes (FALs) and 100 oxo fatty acids (FAs), were detected and visualized in rat brain, kidney, and liver tissue. This study provides a new approach to enhance chemical labeling for in situ tissue submetabolome profiling and improves our knowledge of the molecular histology and complex metabolism of biological tissues.


Asunto(s)
Hidrogeles , Espectrometría de Masa por Ionización de Electrospray , Animales , Técnicas Histológicas , Indicadores y Reactivos , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Anal Chem ; 93(17): 6746-6754, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890766

RESUMEN

Metabolic networks and their dysfunction in the brain are closely associated with central nervous function and many psychogenic diseases. Thus, it is of utmost importance to develop a high-throughput imaging method for metabolic network mapping. Here, we developed a metabolic network mapping method to discover the metabolic contexts and alterations with spatially resolved information from the microregion of the brain by ambient-air flow-assisted desorption electrospray ionization mass spectrometry imaging and metabolomics analysis, which can be performed without any chemical derivatization, labels, or complex sample pretreatment. This method can map hundreds of different polar functional metabolites involved in multiple metabolic pathways, including not only neurotransmitters but also purines, organic acids, polyamines, cholines, and carbohydrates, in the rat brain. These high-coverage metabolite profile and microregional distribution information constitute complex networks that regulate advanced functions in the central nervous system. Moreover, this methodology was further used to discover not only the dysregulated metabolites but also the brain microregions involved in the pathology of a scopolamine-treated Alzheimer's model. Furthermore, this methodology was demonstrated to be a powerful visualizing tool that could offer novel insight into the metabolic events and provide spatial information about these events in central nervous system diseases.


Asunto(s)
Metabolómica , Espectrometría de Masa por Ionización de Electrospray , Animales , Encéfalo , Redes y Vías Metabólicas , Neurotransmisores , Ratas
19.
Anal Chem ; 92(7): 5143-5151, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32134635

RESUMEN

2-Hydroxy fatty acids (2-OHFAs) and 3-hydroxy fatty acids (3-OHFAs) with the same carbon backbone are isomers, both of which are closely related to diseases involving fatty acid oxidation disorder. However, the comprehensive profiling of 2- and 3-OHFAs remains an ongoing challenge due to their high structure similarity, few structure-informative product ions, and limited availability of standards. Here, we developed a new strategy to profile and identify 2- and 3-OHFAs according to structure-dependent retention time prediction models using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Both accurate MS and MS/MS spectra were collected for peak annotation by comparison with an in-house database of theoretically possible 2- and 3-OHFAs. The structures were further confirmed by the validated structure-dependent retention time prediction models, taking advantage of the correlation between the retention time, carbon chain length and number of double bonds, as well as the hydroxyl position-induced isomeric retention time shift rule. With the use of this strategy, 18 2-OHFAs and 32 3-OHFAs were identified in the pooled plasma, of which 7 2-OHFAs and 20 3-OHFAs were identified for the first time in this work, furthering our understanding of OHFA metabolism. Subsequent quantitation method was developed by scheduled multiple reaction monitoring (MRM) and then applied to investigate the alteration of 2- and 3-OHFAs in esophageal squamous cell carcinoma (ESCC) patients. Finally, a potential biomarker panel consisting of six OHFAs with good diagnostic performance was achieved. Our study provides a new strategy for isomer identification and analysis, showing great potential for targeted metabolomics in clinical biomarker discovery.


Asunto(s)
Neoplasias Esofágicas/química , Carcinoma de Células Escamosas de Esófago/química , Ácidos Grasos/sangre , Cromatografía Líquida de Alta Presión , Neoplasias Esofágicas/sangre , Carcinoma de Células Escamosas de Esófago/sangre , Humanos , Estructura Molecular , Espectrometría de Masas en Tándem
20.
Anal Chem ; 91(4): 2838-2846, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30636407

RESUMEN

It is highly challenging to quantitatively map multiple analytes in biotissues without specific chemical labeling. Quantitative mass spectrometry imaging (QMSI) has this potential but still poses technical issues for its variant ionization efficiency across a complicated, heterogeneous biomatrices. Herein, a self-developed air-flow-assisted desorption electrospray ionization (AFADESI) is introduced to present a proof of concept method, virtual calibration (VC) QMSI. This method screens and utilizes analyte response-related endogenous metabolite ions from each mass spectrum as native internal standards (IS). Through machine-learning-based regression and clustering, tissue-specific ionization variation can be automatically recognized, predicted, and normalized region by region or pixel by pixel. Therefore, the quantity of analytes can be accurately mapped across highly structural biosamples including whole body, kidney, brain, tumor, etc. VC-QMSI has the advantages of simple sample preparation without laborious isotopic IS synthesis, extrapolation for those unknown tissues or regions without previous investigation, and automatic spatial recognition without histological guidance. This strategy is suitable for mass spectrometry imaging using a variety of in situ ionization techniques. It is believed that VC-QMSI has wide applicability for drug candidate's discovery, molecular mechanism elucidation, biomarker validation, and clinical diagnosis.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Química Encefálica , Calibración , Análisis por Conglomerados , Descubrimiento de Drogas , Riñón/química , Aprendizaje Automático , Ratones Endogámicos BALB C , Neoplasias/química , Farmacocinética , Análisis de Regresión , Imagen de Cuerpo Entero/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA