Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 5368, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686115

RESUMEN

Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Animales , Emociones , Masculino , Privación Materna , Ratones , Ratones Noqueados , Serotonina/genética , Triptófano Hidroxilasa/genética
2.
Transl Psychiatry ; 7(10): e1246, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972592

RESUMEN

Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2-/-) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph+/-) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Ansiedad/fisiopatología , Reacción de Fuga , Trastorno de Pánico/fisiopatología , Serotonina/fisiología , Agorafobia/fisiopatología , Amígdala del Cerebelo/metabolismo , Animales , Electrochoque , Miedo , Potenciales Postsinápticos Inhibidores , Masculino , Ratones Noqueados , Núcleos del Rafe/metabolismo , Serotonina/deficiencia , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Triptófano Hidroxilasa/genética , Ácido gamma-Aminobutírico/metabolismo
3.
J Parasitol Res ; 2013: 356107, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23970953

RESUMEN

Efforts have been intensified to search for more effective antimalarial agents because of the observed failure of some artemisinin-based combination therapy (ACT) treatments of malaria in Ghana. Xylopic acid, a pure compound isolated from the fruits of the Xylopia aethiopica, was investigated to establish its attributable prophylactic, curative antimalarial, and antipyretic properties. The antimalarial properties were determined by employing xylopic acid (10-100 mg/kg) in ICR mice infected with Plasmodium berghei. Xylopic acid exerted significant (P < 0.05) effects on P. berghei infection similar to artemether/lumefantrine, the standard drug. Furthermore, it significantly (P < 0.05) reduced the lipopolysaccharide- (LPS-) induced fever in Sprague-Dawley rats similar to prednisolone. Xylopic acid therefore possesses prophylactic and curative antimalarial as well as antipyretic properties which makes it an ideal antimalarial agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA