Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454645

RESUMEN

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Saudi Pharm J ; 32(7): 102108, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38868175

RESUMEN

Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-ß) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-ß mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.

3.
J Pharmacol Exp Ther ; 383(3): 208-216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153003

RESUMEN

Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , beta-Lactamas , Animales , Masculino , Ratas , Consumo de Bebidas Alcohólicas/metabolismo , beta-Lactamas/farmacología , Etanol/farmacología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens , Receptores Activados del Proliferador del Peroxisoma
4.
J Pharmacol Exp Ther ; 378(2): 51-59, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33986035

RESUMEN

Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The ß-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic ß-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.


Asunto(s)
beta-Lactamas , Animales , Cocaína , Masculino , Ratas
5.
J Chem Inf Model ; 61(2): 1020-1032, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33538596

RESUMEN

Currently the entire human population is in the midst of a global pandemic caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2). This highly pathogenic virus has to date caused >71 million infections and >1.6 million deaths in >180 countries. Several vaccines and drugs are being studied as possible treatments or prophylactics of this viral infection. M3CLpro (coronavirus main cysteine protease) is a promising drug target as it has a significant role in viral replication. Here we use the X-ray crystal structure of M3CLpro in complex with boceprevir to study the dynamic changes of the protease upon ligand binding. The binding free energy was calculated for water molecules at different locations of the binding site, and molecular dynamics (MD) simulations were carried out for the M3CLpro/boceprevir complex, to thoroughly understand the chemical environment of the binding site. Several HCV NS3/4a protease inhibitors were tested in vitro against M3CLpro. Specifically, asunaprevir, narlaprevir, paritaprevir, simeprevir, and telaprevir all showed inhibitory effects on M3CLpro. Molecular docking and MD simulations were then performed to investigate the effects of these ligands on M3CLpro and to provide insights into the chemical environment of the ligand binding site. Our findings and observations are offered to help guide the design of possible potent protease inhibitors and aid in coping with the COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Proteasas de Cisteína/química , SARS-CoV-2/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Simulación por Computador , Cristalografía por Rayos X , Proteasas de Cisteína/efectos de los fármacos , Humanos , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2/enzimología , Serina Proteasas
6.
J Chem Inf Model ; 61(9): 4745-4757, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34403259

RESUMEN

The main protease of SARS-CoV-2 virus, Mpro, is an essential element for viral replication, and inhibitors targeting Mpro are currently being investigated in many drug development programs as a possible treatment for COVID-19. An in vitro pilot screen of a highly focused collection of compounds was initiated to identify new lead scaffolds for Mpro. These efforts identified a number of hits. The most effective of these was compound SIMR-2418 having an inhibitory IC50 value of 20.7 µM. Molecular modeling studies were performed to understand the binding characteristics of the identified compounds. The presence of a cyclohexenone warhead group facilitated covalent binding with the Cys145 residue of Mpro. Our results highlight the challenges of targeting Mpro protease and pave the way toward the discovery of potent lead molecules.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología
7.
Bioorg Med Chem ; 42: 116251, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34116381

RESUMEN

Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 30(2): 126806, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31757667

RESUMEN

Gaucher disease (GD) results from inherited mutations in the lysosomal enzyme ß-glucocerobrosidase (GCase). Currently available treatment options for Type 1 GD are not efficacious for treating neuronopathic Type 2 and 3 GD due to their inability to cross the blood-brain barrier. In an effort to identify small molecules which could be optimized for CNS penetration we identified tamoxifen from a high throughput phenotypic screen on Type 2 GD patient-derived fibroblasts which reversed the disease phenotype. Structure activity studies around this scaffold led to novel molecules that displayed improved potency, efficacy and reduced estrogenic/antiestrogenic activity compared to the original hits. Here we present the design, synthesis and structure activity relationships that led to the lead molecule Compound 31.


Asunto(s)
Fibroblastos/metabolismo , Enfermedad de Gaucher/patología , Bibliotecas de Moléculas Pequeñas/química , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Concentración 50 Inhibidora , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Fenotipo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Tamoxifeno/química , Tamoxifeno/metabolismo
9.
Bioorg Med Chem Lett ; 28(6): 1127-1131, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29463447

RESUMEN

We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ribonucleasa P/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ribonucleasa P/metabolismo , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 28(13): 2270-2274, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29803730

RESUMEN

The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Diseño de Fármacos , Piperazinas/farmacocinética , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Estilbenos/farmacocinética , Animales , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Cobayas , Semivida , Microsomas Hepáticos/metabolismo , Piperazinas/síntesis química , Piperazinas/química , Estereoisomerismo , Estilbenos/síntesis química , Estilbenos/química , Relación Estructura-Actividad
11.
J Cell Biochem ; 118(10): 3268-3280, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28295503

RESUMEN

Agnoprotein is an important regulatory protein of the human polyoma JC virus (JCV) and plays critical roles during the viral replication cycle. It forms highly stable dimers and oligomers through its Leu/Ile/Phe-rich domain, which is important for the stability and function of the protein. We recently resolved the partial 3D structure of this protein by NMR using a synthetic peptide encompassing amino acids Thr17 to Gln52, where the Leu/Ile/Phe- rich region was found to adopt a major alpha-helix conformation spanning amino acids 23-39. Here, we report the resolution of the 3D structure of full-length JCV agnoprotein by NMR, which not only confirmed the existence of the previously reported major α-helix domain at the same position but also revealed the presence of an additional minor α-helix region spanning amino acid residues Leu6 to lys13. The remaining regions of the protein adopt an intrinsically unstructured conformation. J. Cell. Biochem. 118: 3268-3280, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Virus JC/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Reguladoras y Accesorias Virales/química , Humanos , Estructura Secundaria de Proteína
12.
Bioorg Med Chem Lett ; 27(14): 3117-3122, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28571824

RESUMEN

PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirimidinas/química , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Terciaria de Proteína , Pirimidinas/síntesis química , Pirimidinas/farmacología , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo
13.
J Cell Physiol ; 231(10): 2115-27, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26831433

RESUMEN

Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Infecciones por Polyomavirus/virología , Poliomavirus/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Humanos , Virus JC/aislamiento & purificación , Virus JC/metabolismo , Poliomavirus/aislamiento & purificación
14.
Bioorg Med Chem Lett ; 26(23): 5825-5829, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789139

RESUMEN

Metabolic Syndrome, also referred to as 'Syndrome X' or 'Insulin Resistance Syndrome,' remains a major, unmet medical need despite over 30years of intense effort. Recent research suggests that there may be a causal link between this condition and abnormal glucocorticoid processing. Specifically, dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis leads to increased systemic cortisol concentrations. Cushing' syndrome, a disorder that is also typified by a marked elevation in levels of cortisol, produces clinical symptomology that is similar to those observed in MetS, and they can be alleviated by decreasing circulating cortisol concentrations. As a result, it has been suggested that decreasing systemic cortisol concentration might have a positive impact on the progression of MetS. This could be accomplished through inhibition of enzymes in the cortisol synthetic pathway, 11ß-hydroxylase (Cyp11B1), 17α-hydroxylase-C17,20-lyase (Cyp17), and 21-hydroxylase (Cyp21). We have identified a series of novel sulfonamide analogs of (2S,4R)-Ketoconazole that are potent inhibitors of these enzymes. In addition, selected members of this class of compounds have pharmacokinetic properties consistent with orally delivered drugs, making them well suited to further investigation as potential therapies for MetS.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Cetoconazol/análogos & derivados , Cetoconazol/farmacología , Síndrome Metabólico/tratamiento farmacológico , Sulfonamidas/química , Sulfonamidas/farmacología , Animales , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Diseño de Fármacos , Femenino , Cobayas , Humanos , Cetoconazol/farmacocinética , Masculino , Síndrome Metabólico/enzimología , Sulfonamidas/farmacocinética
15.
Antimicrob Agents Chemother ; 59(4): 2016-28, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605356

RESUMEN

New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.


Asunto(s)
Antibacterianos/farmacología , ARN Bacteriano/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Ribonucleasa P/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrazinas/farmacología , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas , Tiourea/análogos & derivados , Tiourea/farmacología , Transcripción Genética/efectos de los fármacos
16.
J Virol ; 88(12): 6556-75, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672035

RESUMEN

UNLABELLED: Agnoprotein is a small multifunctional regulatory protein required for sustaining the productive replication of JC virus (JCV). It is a mostly cytoplasmic protein localizing in the perinuclear area and forms highly stable dimers/oligomers through a Leu/Ile/Phe-rich domain. There have been no three-dimensional structural data available for agnoprotein due to difficulties associated with the dynamic conversion from monomers to oligomers. Here, we report the first nuclear magnetic resonance (NMR) structure of a synthetic agnoprotein peptide spanning amino acids Thr17 to Glu55 where Lys23 to Phe39 encompassing the Leu/Ile/Phe-rich domain forms an amphipathic α-helix. On the basis of these structural data, a number of Ala substitution mutations were made to investigate the role of the α-helix in the structure and function of agnoprotein. Single L29A and L36A mutations exhibited a significant negative effect on both protein stability and viral replication, whereas the L32A mutation did not. In addition, the L29A mutant displayed a highly nuclear localization pattern, in contrast to the pattern for the wild type (WT). Interestingly, a triple mutant, the L29A+L32A+L36A mutant, yielded no detectable agnoprotein expression, and the replication of this JCV mutant was significantly reduced, suggesting that Leu29 and Leu36 are located at the dimer interface, contributing to the structure and stability of agnoprotein. Two other single mutations, L33A and E34A, did not perturb agnoprotein stability as drastically as that observed with the L29A and L36A mutations, but they negatively affected viral replication, suggesting that the role of these residues is functional rather than structural. Thus, the agnoprotein dimerization domain can be targeted for the development of novel drugs active against JCV infection. IMPORTANCE: Agnoprotein is a small regulatory protein of JC virus (JCV) and is required for the successful completion of the viral replication cycle. It forms highly stable dimers and oligomers through its hydrophobic (Leu/Ile/Phe-rich) domain, which has been shown to play essential roles in the stability and function of the protein. In this work, the Leu/Ile/Phe-rich domain has been further characterized by NMR studies using an agnoprotein peptide spanning amino acids T17 to Q54. Those studies revealed that the dimerization domain of the protein forms an amphipathic α-helix. Subsequent NMR structure-based mutational analysis of the region highlighted the critical importance of certain amino acids within the α-helix for the stability and function of agnoprotein. In conclusion, this study provides a solid foundation for developing effective therapeutic approaches against the dimerization domain of the protein to inhibit its critical roles in JCV infection.


Asunto(s)
Virus JC/metabolismo , Infecciones por Polyomavirus/virología , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Línea Celular , Dimerización , Humanos , Virus JC/química , Virus JC/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
17.
Bioorg Med Chem ; 23(17): 5352-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26278028

RESUMEN

Nrf2 activators represent a good drug target for designing agents to treat diseases associated with oxidative stress. Building upon previous work, we designed and prepared a series of heterocyclic chalcone-based Nrf2 activators with reduced lipophilicity and, in some cases, greater in vitro potency compared to the respective carbocyclic scaffold. These changes resulted in enhanced oral bioavailability and a superior pharmacodynamic effect in vivo.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Chalcona/química , Chalcona/farmacología , Factor 2 Relacionado con NF-E2/agonistas , Administración Oral , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Células CACO-2 , Línea Celular , Chalcona/administración & dosificación , Chalcona/farmacocinética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Solubilidad
18.
Bioorg Med Chem ; 22(3): 1148-55, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24405813

RESUMEN

Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand-protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd=4.4µM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Strychnos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Alcaloides/síntesis química , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral/efectos de los fármacos , Técnicas de Química Sintética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Tubocurarina/análogos & derivados , Tubocurarina/síntesis química , Tubocurarina/química , Tubocurarina/farmacología , Verapamilo/farmacología
19.
Neuroscience ; 552: 89-99, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909675

RESUMEN

Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.

20.
Brain Res Bull ; 211: 110935, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570076

RESUMEN

Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested ß-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these ß-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic ß-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.


Asunto(s)
Etanol , Transportador 2 de Aminoácidos Excitadores , Núcleo Accumbens , Corteza Prefrontal , Animales , Masculino , Transportador 2 de Aminoácidos Excitadores/metabolismo , Etanol/farmacología , Ratas , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Biomarcadores/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA