Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(7): e1009651, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197453

RESUMEN

Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS.


Asunto(s)
Trastornos del Neurodesarrollo/genética , Serina-Treonina Quinasas TOR/genética , Adulto , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Serina-Treonina Quinasas TOR/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(51): 32380-32385, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293416

RESUMEN

A structure of the murine voltage-dependent anion channel (VDAC) was determined by microcrystal electron diffraction (MicroED). Microcrystals of an essential mutant of VDAC grew in a viscous bicelle suspension, making it unsuitable for conventional X-ray crystallography. Thin, plate-like crystals were identified using scanning-electron microscopy (SEM). Crystals were milled into thin lamellae using a focused-ion beam (FIB). MicroED data were collected from three crystal lamellae and merged for completeness. The refined structure revealed unmodeled densities between protein monomers, indicative of lipids that likely mediate contacts between the proteins in the crystal. This body of work demonstrates the effectiveness of milling membrane protein microcrystals grown in viscous media using a focused ion beam for subsequent structure determination by MicroED. This approach is well suited for samples that are intractable by X-ray crystallography. To our knowledge, the presented structure is a previously undescribed mutant of the membrane protein VDAC, crystallized in a lipid bicelle matrix and solved by MicroED.


Asunto(s)
Canales Aniónicos Dependientes del Voltaje/química , Animales , Microscopía por Crioelectrón/métodos , Cristalización , Lípidos/química , Ratones , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/química , Conformación Proteica
3.
J Am Chem Soc ; 144(32): 14564-14577, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35925797

RESUMEN

The voltage-dependent anion channel (VDAC) is a ß-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e. transitioning to one of a variety of low-conducting states of unknown structure. The gated state results in nearly complete suppression of multivalent mitochondrial metabolite (such as ATP and ADP) transport, while enhancing calcium transport. Voltage gating is a universal property of ß-barrel channels, but VDAC gating is anomalously sensitive to transmembrane potential. Here, we show that a single residue in the pore interior, K12, is responsible for most of VDAC's voltage sensitivity. Using the analysis of over 40 µs of atomistic molecular dynamics (MD) simulations, we explore correlations between motions of charged residues inside the VDAC pore and geometric deformations of the ß-barrel. Residue K12 is bistable; its motions between two widely separated positions along the pore axis enhance the fluctuations of the ß-barrel and augment the likelihood of gating. Single channel electrophysiology of various K12 mutants reveals a dramatic reduction of the voltage-induced gating transitions. The crystal structure of the K12E mutant at a resolution of 2.6 Å indicates a similar architecture of the K12E mutant to the wild type; however, 60 µs of atomistic MD simulations using the K12E mutant show restricted motion of residue 12, due to enhanced connectivity with neighboring residues, and diminished amplitude of barrel motions. We conclude that ß-barrel fluctuations, governed particularly by residue K12, drive VDAC gating transitions.


Asunto(s)
Membranas Mitocondriales , Canales Aniónicos Dependientes del Voltaje , Potenciales de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Canales Aniónicos Dependientes del Voltaje/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(12): E2742-E2751, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507231

RESUMEN

Sodium-dependent transporters couple the flow of Na+ ions down their electrochemical potential gradient to the uphill transport of various ligands. Many of these transporters share a common core structure composed of a five-helix inverted repeat and deliver their cargo utilizing an alternating-access mechanism. A detailed characterization of inward-facing conformations of the Na+-dependent sugar transporter from Vibrio parahaemolyticus (vSGLT) has previously been reported, but structural details on additional conformations and on how Na+ and ligand influence the equilibrium between other states remains unknown. Here, double electron-electron resonance spectroscopy, structural modeling, and molecular dynamics are utilized to deduce ligand-dependent equilibria shifts of vSGLT in micelles. In the absence and presence of saturating amounts of Na+, vSGLT favors an inward-facing conformation. Upon binding both Na+ and sugar, the equilibrium shifts toward either an outward-facing or occluded conformation. While Na+ alone does not stabilize the outward-facing state, gating charge calculations together with a kinetic model of transport suggest that the resting negative membrane potential of the cell, absent in detergent-solubilized samples, may stabilize vSGLT in an outward-open conformation where it is poised for binding external sugars. In total, these findings provide insights into ligand-induced conformational selection and delineate the transport cycle of vSGLT.


Asunto(s)
Proteínas de Transporte de Sodio-Glucosa/química , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico Activo , Cisteína/genética , Espectroscopía de Resonancia por Spin del Electrón/métodos , Galactosa/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Micelas , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Sodio/metabolismo , Vibrio parahaemolyticus/química
6.
Proc Natl Acad Sci U S A ; 115(2): E172-E179, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279396

RESUMEN

The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane and constitutes the primary pathway for the exchange of ions and metabolites between the cytosol and the mitochondria. There is accumulating evidence supporting VDAC's role in mitochondrial metabolic regulation and apoptosis, where VDAC oligomerization has been implicated with these processes. Herein, we report a specific pH-dependent dimerization of murine VDAC1 (mVDAC1) identified by double electron-electron resonance and native mass spectrometry. Intermolecular distances on four singly spin-labeled mVDAC1 mutants were used to generate a model of the low-pH dimer, establishing the presence of residue E73 at the interface. This dimer arrangement is different from any oligomeric state previously described, and it forms as a steep function of pH with an apparent pKa of 7.4. Moreover, the monomer-dimer equilibrium affinity constant was determined using native MS, revealing a nearly eightfold enhancement in dimerization affinity at low pH. Mutation of E73 to either alanine or glutamine severely reduces oligomerization, demonstrating the role of protonated E73 in enhancing dimer formation. Based on these results, and the known importance of E73 in VDAC physiology, VDAC dimerization likely plays a significant role in mitochondrial metabolic regulation and apoptosis in response to cytosolic acidification during cellular stress.


Asunto(s)
Glutamatos/química , Multimerización de Proteína , Protones , Canal Aniónico 1 Dependiente del Voltaje/química , Algoritmos , Animales , Glutamatos/genética , Glutamatos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ratones , Modelos Moleculares , Mutación , Conformación Proteica , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808202

RESUMEN

Active transport of sugars into bacteria occurs through symporters driven by ion gradients. LacY is the most well-studied proton sugar symporter, whereas vSGLT is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. LacY has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. vSGLT has a core structure of 10 TM helices organized in two inverted repeats (TM 1-5 and TM 6-10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in LacY the proton (H3O+) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Sodio-Glucosa/química , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Sitios de Unión , Transporte Biológico Activo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Lactosa/metabolismo , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Conformación Proteica , Azúcares/metabolismo , Simportadores/química , Simportadores/metabolismo
8.
Anal Chem ; 92(9): 6622-6630, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32250604

RESUMEN

Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.


Asunto(s)
Acetatos/química , Glutamato Deshidrogenasa/química , Proteínas de la Membrana/química , Metales Alcalinos/química , Piruvato Quinasa/química , Animales , Bovinos , Detergentes/química , Glutamato Deshidrogenasa/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Oxidación-Reducción , Piruvato Quinasa/metabolismo , Conejos , Sales (Química)/química , Solubilidad
9.
Proc Natl Acad Sci U S A ; 114(18): E3622-E3631, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28420794

RESUMEN

Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.


Asunto(s)
Materiales Biomiméticos/química , Membranas Mitocondriales/química , Tubulina (Proteína)/química , Animales , Materiales Biomiméticos/metabolismo , Bovinos , Membranas Mitocondriales/metabolismo , Unión Proteica , Dominios Proteicos , Tubulina (Proteína)/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(27): E3960-6, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325773

RESUMEN

Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.


Asunto(s)
Simulación de Dinámica Molecular , Transportador 1 de Sodio-Glucosa/metabolismo , Glucosa/metabolismo , Células HEK293 , Humanos , Cadenas de Markov , Método de Montecarlo , Técnicas de Placa-Clamp , Sodio/metabolismo
11.
J Biol Chem ; 292(22): 9294-9304, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28396346

RESUMEN

Voltage-dependent anion channel-1 (VDAC1) is a highly regulated ß-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr83 and Glu73, respectively. When Glu73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu73 residue.


Asunto(s)
Colesterol/química , Canal Aniónico 1 Dependiente del Voltaje/química , Marcadores de Afinidad , Animales , Sitios de Unión , Ratones , Resonancia Magnética Nuclear Biomolecular , Canal Aniónico 1 Dependiente del Voltaje/genética
12.
Anal Chem ; 89(4): 2636-2644, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28194953

RESUMEN

Identifying sites of protein-ligand interaction is important for structure-based drug discovery and understanding protein structure-function relationships. Mass spectrometry (MS) has emerged as a useful tool for identifying residues covalently modified by ligands. Current methods use database searches that are dependent on acquiring interpretable fragmentation spectra (MS2) of peptide-ligand adducts. This is problematic for identifying sites of hydrophobic ligand incorporation in integral membrane proteins (IMPs), where poor aqueous solubility and ionization of peptide-ligand adducts and collision-induced adduct loss hinder the acquisition of quality MS2 spectra. To address these issues, we developed a fast ligand identification (FLI) tag that can be attached to any alkyne-containing ligand via Cu(I)-catalyzed cycloaddition. The FLI tag adds charge to increase solubility and ionization, and utilizes stable isotope labeling for MS1 level identification of hydrophobic peptide-ligand adducts. The FLI tag was coupled to an alkyne-containing neurosteroid photolabeling reagent and used to identify peptide-steroid adducts in MS1 spectra via the stable heavy isotope pair. Peptide-steroid adducts were not identified in MS2-based database searches because collision-induced adduct loss was the dominant feature of collision-induced dissociation (CID) fragmentation, but targeted analysis of MS1 pairs using electron transfer dissociation (ETD) markedly reduced adduct loss. Using the FLI tag and ETD, we identified Glu73 as the site of photoincorporation of our neurosteroid ligand in the IMP, mouse voltage-dependent anion channel-1 (mVDAC1), and top-down MS confirmed a single site of photolabeling.


Asunto(s)
Ligandos , Péptidos/química , Espectrometría de Masas en Tándem , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Alquinos/química , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Química Clic , Interacciones Hidrofóbicas e Hidrofílicas , Marcaje Isotópico , Ratones , Péptidos/metabolismo , Solubilidad , Rayos Ultravioleta , Canal Aniónico 1 Dependiente del Voltaje/química
13.
J Biol Chem ; 290(1): 127-41, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398883

RESUMEN

The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ~1. In addition, the related and more experimentally tractable SSS member PutP (the Na(+)/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Escherichia coli/química , Galactosa/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Sodio-Glucosa/química , Sodio/química , Simportadores/química , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sitios de Unión , Transporte Biológico , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactosa/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Sodio/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Simportadores/metabolismo , Termodinámica , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo
14.
Nature ; 468(7326): 988-91, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21131949

RESUMEN

Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 Å. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.


Asunto(s)
Galactosa/metabolismo , Sodio/metabolismo , Simportadores/química , Simportadores/metabolismo , Vibrio parahaemolyticus/química , Regulación Alostérica , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
15.
J Biol Chem ; 289(18): 12566-77, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24627492

RESUMEN

In recent years, there has been a vast increase in structural and functional understanding of VDAC1, but VDAC2 and -3 have been understudied despite having many unique phenotypes. One reason for the paucity of structural and biochemical characterization of the VDAC2 and -3 isoforms stems from the inability of obtaining purified, functional protein. Here we demonstrate the expression, isolation, and basic characterization of zebrafish VDAC2 (zfVDAC2). Further, we resolved the structure of zfVDAC2 at 2.8 Šresolution, revealing a crystallographic dimer. The dimer orientation was confirmed in solution by double electron-electron resonance spectroscopy and by cross-linking experiments disclosing a dimer population of ∼20% in lauryldimethine amine oxide detergent micelles, whereas in lipidic bicelles a higher population of dimeric and higher order oligomers species were observed. The present study allows for a more accurate structural comparison between VDAC2 and its better-studied counterpart VDAC1.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Multimerización de Proteína , Canal Aniónico 2 Dependiente del Voltaje/química , Proteínas de Pez Cebra/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Conductividad Eléctrica , Electroforesis en Gel de Poliacrilamida , Membrana Dobles de Lípidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(22): 8682-7, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586105

RESUMEN

Orai1 and stromal interaction molecule (STIM)1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels. Orai1 is a pore subunit of CRAC channels, and STIM1 acts as an endoplasmic reticulum (ER) Ca(2+) sensor that detects store depletion. Upon store depletion after T-cell receptor stimulation, STIM1 translocates and coclusters with Orai1 at sites of close apposition of the plasma membrane (PM) and the ER membrane. However, the molecular components of these ER-PM junctions remain poorly understood. Using affinity protein purification, we uncovered junctate as an interacting partner of Orai1-STIM1 complex. Furthermore, we identified a Ca(2+)-binding EF-hand motif in the ER-luminal region of junctate. Mutation of this EF-hand domain of junctate impaired its Ca(2+) binding and resulted in partial activation of CRAC channels and clustering of STIM1 independently of store depletion. In addition to the known mechanisms of STIM1 clustering (i.e., phosphoinositide and Orai1 binding), our study identifies an alternate mechanism to recruit STIM1 into the ER-PM junctions via binding to junctate. We propose that junctate, a Ca(2+)-sensing ER protein, is a structural component of the ER-PM junctions where Orai1 and STIM1 cluster and interact in T cells.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/genética , Membrana Celular/metabolismo , Motivos EF Hand/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Microscopía Fluorescente , Oxigenasas de Función Mixta/genética , Proteínas Musculares/genética , Mutación , Proteínas de Neoplasias/genética , Proteína ORAI1 , Unión Proteica , Transporte de Proteínas , Molécula de Interacción Estromal 1
17.
Trends Biochem Sci ; 35(9): 514-21, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20708406

RESUMEN

The most abundant protein of the mitochondrial outer membrane is the voltage-dependent anion channel (VDAC), which facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by interactions with other proteins and small molecules. VDAC has been studied extensively for more than three decades, and last year three independent investigations revealed a structure of VDAC-1 exhibiting 19 transmembrane beta-strands, constituting a unique structural class of beta-barrel membrane proteins. Here, we provide a historical perspective on VDAC research and give an overview of the experimental design used to obtain these structures. Furthermore, we validate the protein refolding approach and summarize the biochemical and biophysical evidence that links the 19-stranded structure to the native form of VDAC.


Asunto(s)
Proteínas Mitocondriales/química , Canales Aniónicos Dependientes del Voltaje/química , Animales , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica , Proteínas Mitocondriales/metabolismo , Pliegue de Proteína , Canales Aniónicos Dependientes del Voltaje/metabolismo
18.
Biophys J ; 106(6): 1280-9, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24655503

RESUMEN

Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 µs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas de Transporte de Sodio-Glucosa/química , Algoritmos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Galactosa/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas de Transporte de Sodio-Glucosa/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(23): 9361-6, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21593407

RESUMEN

Lactose permease of Escherichia coli (LacY) with a single-Cys residue in place of A122 (helix IV) transports galactopyranosides and is specifically inactivated by methanethiosulfonyl-galactopyranosides (MTS-gal), which behave as unique suicide substrates. In order to study the mechanism of inactivation more precisely, we solved the structure of single-Cys122 LacY in complex with covalently bound MTS-gal. This structure exhibits an inward-facing conformation similar to that observed previously with a slight narrowing of the cytoplasmic cavity. MTS-gal is bound covalently, forming a disulfide bond with C122 and positioned between R144 and W151. E269, a residue essential for binding, coordinates the C-4 hydroxyl of the galactopyranoside moiety. The location of the sugar is in accord with many biochemical studies.


Asunto(s)
Proteínas de Escherichia coli/química , Galactosa/química , Proteínas de Transporte de Membrana/química , Estructura Terciaria de Proteína , Sustitución de Aminoácidos , Sitios de Unión/genética , Transporte Biológico , Cristalización , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Galactosa/metabolismo , Lactosa/química , Lactosa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mesilatos/química , Mesilatos/metabolismo , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Difracción de Rayos X
20.
J Biol Chem ; 287(11): 8652-9, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22287543

RESUMEN

The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.


Asunto(s)
Proteínas Arqueales/química , Methanosarcina/química , Intercambiador de Sodio-Calcio/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Calcio/química , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Expresión Génica , Transporte Iónico/fisiología , Potenciales de la Membrana/fisiología , Methanosarcina/genética , Methanosarcina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sodio/química , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA