Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(17): 3847-3868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470338

RESUMEN

Cardiac voltage-gated sodium (Na+ ) channels (Nav 1.5) are crucial for myocardial electrical excitation. Recent studies based on single-channel recordings have suggested that Na+ channels interact functionally and exhibit coupled gating. However, the analysis of such recordings frequently relies on manual interventions, which can lead to bias. Here, we developed an automated pipeline to de-trend and idealize single-channel currents, and assessed possible functional interactions in cell-attached patch clamp experiments in HEK293 cells expressing human Nav 1.5 channels as well as in adult mouse and rabbit ventricular cardiomyocytes. Our pipeline involved de-trending individual sweeps by linear optimization using a library of predefined functions, followed by digital filtering and baseline offset. Subsequently, the processed sweeps were idealized based on the idea that the ensemble average of the idealized current identified by thresholds between current levels reconstructs at best the ensemble average current from the de-trended sweeps. This reconstruction was achieved by non-linear optimization. To ascertain functional interactions, we examined the distribution of the numbers of open channels at every time point during the activation protocol and compared it to the distribution expected for independent channels. We also examined whether the channels tended to synchronize their openings and closings. However, we did not uncover any solid evidence of such interactions in our recordings. Rather, our results indicate that wild-type Nav 1.5 channels are independent entities or exhibit only very weak functional interactions that are probably irrelevant under physiological conditions. Nevertheless, our unbiased analysis will be important for further studies examining whether auxiliary proteins potentiate functional Na+ channel interactions. KEY POINTS: Nav 1.5 channels are critical for cardiac excitation. They are part of macromolecular interacting complexes, and it was previously suggested that two neighbouring channels may functionally interact and exhibit coupled gating. Manual interventions when processing single-channel recordings can lead to bias and inaccurate data interpretation. We developed an automated pipeline to de-trend and idealize single-channel currents and assessed possible functional interactions between Nav 1.5 channels in HEK293 cells and cardiomyocytes during activation protocols using the cell-attached patch clamp technique. In recordings consisting of up to 1000 sweeps from the same patch, our analysis did not reveal any evidence of functional interactions or coupled gating between wild-type Nav 1.5 channels. Our unbiased analysis may be useful in further studies examining how Na+ channel interactions are affected by mutations and auxiliary proteins.


Asunto(s)
Miocardio , Miocitos Cardíacos , Ratones , Humanos , Animales , Conejos , Células HEK293 , Miocitos Cardíacos/fisiología
2.
Am J Physiol Heart Circ Physiol ; 324(4): H504-H518, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800508

RESUMEN

Upon myocardial infarction (MI), ischemia-induced cell death triggers an inflammatory response responsible for removing necrotic material and inducing tissue repair. TRPM4 is a Ca2+-activated ion channel permeable to monovalent cations. Although its role in cardiomyocyte-driven hypertrophy and arrhythmia post-MI has been established, no study has yet investigated its role in the inflammatory process orchestrated by endothelial cells, immune cells, and fibroblasts. This study aims to assess the role of TRPM4 in 1) survival and cardiac function, 2) inflammation, and 3) healing post-MI. We performed ligation of the left coronary artery or sham intervention on 154 Trpm4 WT or KO mice under isoflurane anesthesia. Survival and echocardiographic functions were monitored up to 5 wk. We collected serum during the acute post-MI phase to analyze proteomes and performed single-cell RNA sequencing on nonmyocytic cells of hearts after 24 and 72 h. Lastly, we assessed chronic fibrosis and angiogenesis. We observed no significant differences in survival or cardiac function, even though our proteomics data showed significantly decreased tissue injury markers (i.e., creatine kinase M and VE-cadherin) in KO serum after 12 h. On the other hand, inflammation, characterized by serum amyloid P component in the serum, higher number of recruited granulocytes, inflammatory monocytes, and macrophages, as well as expression of proinflammatory genes, was significantly higher in KO. This correlated with increased chronic cardiac fibrosis and angiogenesis. Since inflammation and fibrosis are closely linked to adverse remodeling, future therapeutic attempts at inhibiting TRPM4 will need to assess these parameters carefully before proceeding with translational studies.NEW & NOTEWORTHY Deletion of Trpm4 increases markers of cardiac and systemic inflammation within the first 24 h after MI, while inducing an earlier fibrotic transition at 72 h and more overall chronic fibrosis and angiogenesis at 5 wk. The descriptive, robust, and methodologically broad approach of this study sheds light on an important caveat that will need to be taken into account in all future therapeutic attempts to inhibit TRPM4 post-MI.


Asunto(s)
Infarto del Miocardio , Canales Catiónicos TRPM , Ratones , Animales , Células Endoteliales/metabolismo , Multiómica , Miocitos Cardíacos/metabolismo , Inflamación/metabolismo , Fibrosis , Ratones Endogámicos C57BL , Ratones Noqueados , Remodelación Ventricular , Miocardio/metabolismo , Modelos Animales de Enfermedad , Canales Catiónicos TRPM/genética
3.
J Physiol ; 600(12): 2853-2875, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413134

RESUMEN

Sympathetic neurons densely innervate the myocardium with non-random topology and establish structured contacts (i.e. neuro-cardiac junctions, NCJ) with cardiomyocytes, allowing synaptic intercellular communication. Establishment of heart innervation is regulated by molecular mediators released by myocardial cells. The mechanisms underlying maintenance of cardiac innervation in the fully developed heart, are, however, less clear. Notably, several cardiac diseases, primarily affecting cardiomyocytes, are associated with sympathetic denervation, supporting the hypothesis that retrograde 'cardiomyocyte-to-sympathetic neuron' communication is essential for heart cellular homeostasis. We aimed to determine whether cardiomyocytes provide nerve growth factor (NGF) to sympathetic neurons, and the role of the NCJ in supporting such retrograde neurotrophic signalling. Immunofluorescence on murine and human heart slices shows that NGF and its receptor, tropomyosin-receptor-kinase-A, accumulate, respectively, in the pre- and post-junctional sides of the NCJ. Confocal immunofluorescence, scanning ion conductance microscopy and molecular analyses, in co-cultures, demonstrate that cardiomyocytes feed NGF to sympathetic neurons, and that this mechanism requires a stable intercellular contact at the NCJ. Consistently, cardiac fibroblasts, devoid of NCJ, are unable to sustain SN viability. ELISA assay and competition binding experiments suggest that this depends on the NCJ being an insulated microenvironment, characterized by high [NGF]. In further support, real-time imaging of tropomyosin-receptor-kinase-A vesicle movements demonstrate that efficiency of neurotrophic signalling parallels the maturation of such structured intercellular contacts. Altogether, our results demonstrate the mechanisms which link sympathetic neuron survival to neurotrophin release by directly innervated cardiomyocytes, conceptualizing sympathetic neurons as cardiomyocyte-driven heart drivers. KEY POINTS: CMs are the cell source of nerve growth factor (NGF), required to sustain innervating cardiac SNs; NCJ is the place of the intimate liaison, between SNs and CMs, allowing on the one hand neurons to peremptorily control CM activity, and on the other, CMs to adequately sustain the contacting, ever-changing, neuronal actuators; alterations in NCJ integrity may compromise the efficiency of 'CM-to-SN' signalling, thus representing a potentially novel mechanism of sympathetic denervation in cardiac diseases.


Asunto(s)
Cardiopatías , Miocitos Cardíacos , Animales , Cardiopatías/metabolismo , Humanos , Ratones , Miocitos Cardíacos/fisiología , Factor de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Receptor trkA/metabolismo , Sistema Nervioso Simpático/fisiología , Tropomiosina/metabolismo
4.
Chimia (Aarau) ; 76(12): 992-995, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069793

RESUMEN

The National Center of Competence in Research (NCCR) TransCure, funded by the Swiss National Science Foundation and the University of Bern, was active from 2010 to 2022. It provided unique research and educational framework in the membrane transporter and ion channel field. Thanks to an interdisciplinary approach comprising physiology, structural biology, and chemistry, in parallel to a rich offer in complementary areas such as education and technology transfer, the network achieved outstanding scientific results and contributed to the education of young scientists. In this review, we present the main features and milestones of the NCCR TransCure.

5.
Chimia (Aarau) ; 76(12): 1039-1044, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069800

RESUMEN

The transient receptor potential melastatin 4 (TRPM4) ion channel is ubiquitously expressed. Dysregulation and/or functional mutations of TRPM4 lead to several diseases. Within our studies, we screened for TRPM4 inhibitors and identified small molecules that block TRPM4 in the low µM range. Furthermore, we investigated the pathophysiology of TRPM4 in cardiac conditions, immune diseases and cancer using these novel inhibitors, molecular biology techniques and functional assays.

6.
Pflugers Arch ; 473(3): 507-519, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33392831

RESUMEN

TRPM4 is a Ca2+-activated nonselective cation channel involved in cardiovascular physiology and pathophysiology. Based on cellular experiments and numerical simulations, the present study aimed to explore the potential arrhythmogenicity of CaMKII-mediated TRPM4 channel overactivation linked to Ca2+ dysregulation in the heart. The confocal immunofluorescence microscopy, western blot, and proximity ligation assay (PLA) in HL-1 atrial cardiomyocytes and/or TRPM4-expressing TSA201 cells suggested that TRPM4 and CaMKII proteins are closely localized. Co-expression of TRPM4 and CaMKIIδ or a FRET-based sensor Camui in HEK293 cells showed that the extent of TRPM4 channel activation was correlated with that of CaMKII activity, suggesting their functional interaction. Both expressions and interaction of the two proteins were greatly enhanced by angiotensin II treatment, which induced early afterdepolarizations (EADs) at the repolarization phase of action potentials (APs) recorded from HL-1 cells by the current clamp mode of patch clamp technique. This arrhythmic change disappeared after treatment with the TRPM4 channel blocker 9-phenanthrol or CaMKII inhibitor KN-62. In order to quantitatively assess how CaMKII modulates the gating behavior of TRPM4 channel, the ionomycin-permeabilized cell-attached recording was employed to obtain the voltage-dependent parameters such as steady-state open probability and time constants for activation/deactivation at different [Ca2+]i. Numerical simulations incorporating these kinetic data into a modified HL-1 model indicated that > 3-fold increase in TRPM4 current density induces EADs at the late repolarization phase and CaMKII inhibition (by KN-62) completely eliminates them. These results collectively suggest a novel arrhythmogenic mechanism involving excessive CaMKII activity that causes TRPM4 overactivation in the stressed heart.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPM/metabolismo , Línea Celular , Humanos , Modelos Teóricos
7.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810249

RESUMEN

Transient receptor potential melastatin member 4 (TRPM4) encodes a Ca2+-activated, non-selective cation channel that is functionally expressed in several tissues, including the heart. Pathogenic mutants in TRPM4 have been reported in patients with inherited cardiac diseases, including conduction blockage and Brugada syndrome. Heterologous expression of mutant channels in cell lines indicates that these mutations can lead to an increase or decrease in TRPM4 expression and function at the cell surface. While the expression and clinical variant studies further stress the importance of TRPM4 in cardiac function, the cardiac electrophysiological phenotypes in Trpm4 knockdown mouse models remain incompletely characterized. To study the functional consequences of Trpm4 deletion on cardiac electrical activity in mice, we performed perforated-patch clamp and immunoblotting studies on isolated atrial and ventricular cardiac myocytes and surfaces, as well as on pseudo- and intracardiac ECGs, either in vivo or in Langendorff-perfused explanted mouse hearts. We observed that TRPM4 is expressed in atrial and ventricular cardiac myocytes and that deletion of Trpm4 unexpectedly reduces the peak Na+ currents in myocytes. Hearts from Trpm4-/- mice presented increased sensitivity towards mexiletine, a Na+ channel blocker, and slower intraventricular conduction, consistent with the reduction of the peak Na+ current observed in the isolated cardiac myocytes. This study suggests that TRPM4 expression impacts the Na+ current in murine cardiac myocytes and points towards a novel function of TRPM4 regulating the Nav1.5 function in murine cardiac myocytes.


Asunto(s)
Arritmias Cardíacas/genética , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Canales Catiónicos TRPM/genética , Función Ventricular
8.
Molecules ; 25(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085432

RESUMEN

Epigallocatechin-3-Gallate (EGCG) has been extensively studied for its protective effect against cardiovascular disorders. This effect has been attributed to its action on multiple molecular pathways and transmembrane proteins, including the cardiac Nav1.5 channels, which are inhibited in a dose-dependent manner. However, the molecular mechanism underlying this effect remains to be unveiled. To this aim, we have characterized the EGCG effect on Nav1.5 using electrophysiology and molecular dynamics (MD) simulations. EGCG superfusion induced a dose-dependent inhibition of Nav1.5 expressed in tsA201 cells, negatively shifted the steady-state inactivation curve, slowed the inactivation kinetics, and delayed the recovery from fast inactivation. However, EGCG had no effect on the voltage-dependence of activation and showed little use-dependent block on Nav1.5. Finally, MD simulations suggested that EGCG does not preferentially stay in the center of the bilayer, but that it spontaneously relocates to the membrane headgroup region. Moreover, no sign of spontaneous crossing from one leaflet to the other was observed, indicating a relatively large free energy barrier associated with EGCG transport across the membrane. These results indicate that EGCG may exert its biophysical effect via access to its binding site through the cell membrane or via a bilayer-mediated mechanism.


Asunto(s)
Fenómenos Biofísicos , Catequina/análogos & derivados , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Catequina/química , Catequina/farmacología , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Simulación de Dinámica Molecular , Bloqueadores de los Canales de Sodio/farmacología
9.
Physiol Rev ; 92(3): 1317-58, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22811429

RESUMEN

Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.


Asunto(s)
Comunicación Celular , Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Potenciales de Acción , Animales , Comunicación Celular/genética , Acoplamiento Excitación-Contracción , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Canales Iónicos/genética , Cinética , Metabolismo de los Lípidos , Mutación , Transporte de Proteínas , Sarcolema/metabolismo , Transducción de Señal/genética
10.
Int J Legal Med ; 133(6): 1733-1742, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31455979

RESUMEN

Sudden arrhythmic death syndrome (SADS) in young individuals is a devastating and tragic event often caused by an undiagnosed inherited cardiac disease. Although post-mortem genetic testing represents a promising tool to elucidate potential disease-causing mechanisms in such autopsy-negative death cases, a variant interpretation is still challenging, and functional consequences of identified sequence alterations often remain unclear. Recently, we have identified a novel heterozygous missense variant (N1774H) in the Nav1.5 channel-encoding gene SCN5A in a 19-year-old female SADS victim. The aim of this study was to perform a co-segregation analysis in family members of the index case and to evaluate the functional consequences of this SCN5A variant. Functional characterization of the SCN5A N1774H variant was performed using patch-clamp techniques in TsA-201 cell line transiently expressing either wild-type or variant Nav1.5 channels. Electrophysiological analyses revealed that variant Nav1.5 channels show a loss-of-function in the peak current densities, but an increased late current compared to the wild-type channels, which could lead to both, loss- and gain-of-function respectively. Furthermore, clinical assessment and genetic testing of the relatives of the index case showed that all N1774H mutation carriers have prolonged QT intervals. The identification of several genotype and phenotype positive family members and the functional implication of the SCN5A N1774H variant support the evidence of the in silico predicted pathogenicity of the here reported sequence alteration.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Linaje , Femenino , Genotipo , Heterocigoto , Humanos , Lactante , Masculino , Fenotipo , Secuenciación del Exoma , Adulto Joven
11.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614475

RESUMEN

Dysfunction of the cardiac sodium channel Nav1.5 (encoded by the SCN5A gene) is associated with arrhythmias and sudden cardiac death. SCN5A mutations associated with long QT syndrome type 3 (LQT3) lead to enhanced late sodium current and consequent action potential (AP) prolongation. Internalization and degradation of Nav1.5 is regulated by ubiquitylation, a post-translational mechanism that involves binding of the ubiquitin ligase Nedd4-2 to a proline-proline-serine-tyrosine sequence of Nav1.5, designated the PY-motif. We investigated the biophysical properties of the LQT3-associated SCN5A-p.Y1977N mutation located in the Nav1.5 PY-motif, both in HEK293 cells as well as in newly generated mice harboring the mouse homolog mutation Scn5a-p.Y1981N. We found that in HEK293 cells, the SCN5A-p.Y1977N mutation abolished the interaction between Nav1.5 and Nedd4-2, suppressed PY-motif-dependent ubiquitylation of Nav1.5, and consequently abrogated Nedd4-2 induced sodium current (INa) decrease. Nevertheless, homozygous mice harboring the Scn5a-p.Y1981N mutation showed no electrophysiological alterations nor changes in AP or (late) INa properties, questioning the in vivo relevance of the PY-motif. Our findings suggest the presence of compensatory mechanisms, with additional, as yet unknown, factors likely required to reduce the "ubiquitylation reserve" of Nav1.5. Future identification of such modulatory factors may identify potential triggers for arrhythmias and sudden cardiac death in the setting of LQT3 mutations.


Asunto(s)
Sustitución de Aminoácidos , Síndrome de QT Prolongado/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Secuencias de Aminoácidos , Animales , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Unión Proteica , Ubiquitinación , Adulto Joven
12.
J Physiol ; 596(4): 563-589, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29210458

RESUMEN

KEY POINTS: It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. ABSTRACT: It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased peak INa at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na+ channel distribution. In the intercalated disc computer model, redistributing the Na+ channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na+ channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac INa , and our simulations reveal the functional role of the aggregation of Na+ channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation.


Asunto(s)
Potenciales de Acción , Espacio Extracelular/fisiología , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Sodio/metabolismo , Células HEK293 , Humanos , Modelos Teóricos , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Análisis Espacio-Temporal
13.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L921-L932, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30211653

RESUMEN

Differentiation of primary alveolar type II epithelial cells (AEC II) to AEC type I in culture is a major barrier in the study of the alveolar epithelium in vitro. The establishment of an AEC II cell line derived from induced pluripotent stem cells (iPSC) represents a novel opportunity to study alveolar epithelial cell biology, for instance, in the context of lung injury, fibrosis, and repair. In the present study, we generated long-lasting AEC II from iPSC (LL-iPSC-AEC II). LL-iPSC-AEC II displayed morphological characteristics of AEC II, including growth in a cobblestone monolayer, the presence of lamellar bodies, and microvilli, as shown by electron microscopy. Also, LL-iPSC-AEC II expressed AEC type II proteins, such as cytokeratin, surfactant protein C, and LysoTracker DND 26 (a marker for lamellar bodies). Furthermore, the LL-iPSC-AEC II exhibited functional properties of AEC II by an increase of transepithelial electrical resistance over time, secretion of inflammatory mediators in biologically relevant quantities (IL-6 and IL-8), and efficient in vitro alveolar epithelial wound repair. Consistent with the AEC II phenotype, the cell line showed the ability to uptake and release surfactant protein B, to secrete phospholipids, and to differentiate into AEC type I. In summary, we established a long-lasting, but finite AEC type II cell line derived from iPSC as a novel cellular model to study alveolar epithelial cell biology in lung health and disease.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular/fisiología , Línea Celular , Células HEK293 , Humanos , Lesión Pulmonar/patología , Fenotipo , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología
14.
Circ Res ; 119(4): 544-56, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27364017

RESUMEN

RATIONALE: Mechanisms underlying membrane protein localization are crucial in the proper function of cardiac myocytes. The main cardiac sodium channel, NaV1.5, carries the sodium current (INa) that provides a rapid depolarizing current during the upstroke of the action potential. Although enriched in the intercalated disc, NaV1.5 is present in different membrane domains in myocytes and interacts with several partners. OBJECTIVE: To test the hypothesis that the MAGUK (membrane-associated guanylate kinase) protein CASK (calcium/calmodulin-dependent serine protein kinase) interacts with and regulates NaV1.5 in cardiac myocytes. METHODS AND RESULTS: Immunostaining experiments showed that CASK localizes at lateral membranes of cardiac myocytes, in association with dystrophin. Whole-cell patch clamp showed that CASK-silencing increases INa in vitro. In vivo CASK knockdown similarly increased INa recorded in freshly isolated myocytes. Pull-down experiments revealed that CASK directly interacts with the C-terminus of NaV1.5. CASK silencing reduces syntrophin expression without affecting NaV1.5 and dystrophin expression levels. Total Internal Reflection Fluorescence microscopy and biotinylation assays showed that CASK silencing increased the surface expression of NaV1.5 without changing mRNA levels. Quantification of NaV1.5 expression at the lateral membrane and intercalated disc revealed that the lateral membrane pool only was increased upon CASK silencing. The protein transport inhibitor brefeldin-A prevented INa increase in CASK-silenced myocytes. During atrial dilation/remodeling, CASK expression was reduced but its localization remained unchanged. CONCLUSION: This study constitutes the first description of an unconventional MAGUK protein, CASK, which directly interacts with NaV1.5 channel and controls its surface expression at the lateral membrane by regulating ion channel trafficking.


Asunto(s)
Regulación hacia Abajo/fisiología , Guanilato-Quinasas/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Unión Proteica/fisiología , Ratas
15.
Hum Mutat ; 38(5): 485-493, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28168870

RESUMEN

Voltage-gated sodium channels are pore-forming transmembrane proteins that selectively allow sodium ions to flow across the plasma membrane according to the electro-chemical gradient thus mediating the rising phase of action potentials in excitable cells and playing key roles in physiological processes such as neurotransmission, skeletal muscle contraction, heart rhythm, and pain sensation. Genetic variations in the nine human genes encoding these channels are known to cause a large range of diseases affecting the nervous and cardiac systems. Understanding the molecular effect of genetic variations is critical for elucidating the pathologic mechanisms of known variations and in predicting the effect of newly discovered ones. To this end, we have created a Web-based tool, the Ion Channels Variants Portal, which compiles all variants characterized functionally in the human sodium channel genes. This portal describes 672 variants each associated with at least one molecular or clinical phenotypic impact, for a total of 4,658 observations extracted from 264 different research articles. These data were captured as structured annotations using standardized vocabularies and ontologies, such as the Gene Ontology and the Ion Channel ElectroPhysiology Ontology. All these data are available to the scientific community via neXtProt at https://www.nextprot.org/portals/navmut.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Mutación , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Biología Computacional/métodos , Fenómenos Electrofisiológicos/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Dominios Proteicos , Índice de Severidad de la Enfermedad , Programas Informáticos , Canales de Sodio Activados por Voltaje/química , Navegador Web
16.
Biochim Biophys Acta ; 1863(7 Pt B): 1791-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26907222

RESUMEN

During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Na(v)1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Na(v)1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Síndrome de Brugada/genética , Genes Dominantes , Frecuencia Cardíaca/genética , Mutación , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Potenciales de Acción , Animales , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatología , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fenotipo , Conformación Proteica , Relación Estructura-Actividad
17.
Biochim Biophys Acta ; 1863(7 Pt B): 1806-12, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26707467

RESUMEN

Over the past 20 years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Ca(v)1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Ca(v)1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Ca(v)1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Ca(v)1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canalopatías/genética , Canalopatías/metabolismo , Canalopatías/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Potenciales de la Membrana , Complejos Multiproteicos , Mutación , Subunidades de Proteína , Factores de Riesgo
18.
Circ Res ; 116(12): 1971-88, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26044251

RESUMEN

The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.


Asunto(s)
Canalopatías/complicaciones , Muerte Súbita Cardíaca/etiología , Canales Iónicos/fisiología , Sustancias Macromoleculares/química , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/fisiología , Compartimento Celular , Canalopatías/genética , Canalopatías/fisiopatología , Modelos Animales de Enfermedad , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Canales KATP/química , Canales KATP/fisiología , Proteínas de la Membrana/fisiología , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/fisiología , Mapeo de Interacción de Proteínas , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA