Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 505(7483): 395-8, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24336199

RESUMEN

River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.


Asunto(s)
Dióxido de Carbono/análisis , Ríos/química , Humedales , Atmósfera/química , Brasil , Ciclo del Carbono , Lagos/química , Plantas/metabolismo , Movimientos del Agua
2.
Limnol Oceanogr ; 64(4): 1737-1749, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31598008

RESUMEN

Macrophyte detritus is one of the main sources of organic carbon (OC) in inland waters, and it is potentially available for methane (CH4) production in anoxic bottom waters and sediments. However, the transformation of macrophyte-derived OC into CH4 has not been studied systematically, thus its extent and relationship with macrophyte characteristics remains uncertain. We performed decomposition experiments of macrophyte detritus from 10 different species at anoxic conditions, in presence and absence of a freshwater sediment, in order to relate the extent and rate of CH4 production to the detritus water content, C/N and C/P ratios. A significant fraction of the macrophyte OC was transformed to CH4 (mean = 7.9%; range = 0-15.0%) during the 59-d incubation, and the mean total C loss to CO2 and CH4 was 17.3% (range = 1.3-32.7%). The transformation efficiency of macrophyte OC to CH4 was significantly and positively related to the macrophyte water content, and negatively to its C/N and C/P ratios. The presence of sediment increased the transformation efficiency to CH4 from an average of 4.0% (without sediment) to 11.8%, possibly due to physicochemical conditions favorable for CH4 production (low redox potential, buffered pH) or because sediment particles facilitate biofilm formation. The relationship between macrophyte characteristics and CH4 production can be used by future studies to model CH4 emission in systems colonized by macrophytes. Furthermore, this study highlights that the extent to which macrophyte detritus is mixed with sediment also affects CH4 production.

3.
Mar Pollut Bull ; 201: 116130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364525

RESUMEN

Phosphorus (P) behavior was evaluated in mangrove wetlands impacted by urban sewage, including a deforested site. Sediment cores were analyzed for grain size, organic carbon, total nitrogen, stable isotopes (δ13C and δ15N), P contents, and pore water PO43- concentrations and net consumption/production rates. Under stronger eutrophication influence, significantly higher P (1390 vs. <1000 µg/g), δ15N (8.9 vs. <6.7 ‰) and algal material contents (with lower C/N ratio and heavier δ13C) occurred. Depth-integrated PO43- consumption rates in eutrophicated sites were up to two orders of magnitude higher (at the deforested site) than in a moderately preserved mangrove. The whole core of the moderately preserved site presented no saturation of PO43- buffering capacity, while more eutrophicated sites developed buffering zones saturated at ∼18-26 cm depth. Contrasting to nearby subtidal environments, eutrophication did not cause larger pore water PO43- concentration, evidencing the role of PO43- buffering on P filtering by mangrove wetlands.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Nitrógeno , Eutrofización , Humedales , Fosfatos
4.
Sci Total Environ ; 850: 157988, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35963403

RESUMEN

Mangroves are one of the most important but threatened blue carbon ecosystems globally. Rapid urban growth has resulted in nutrient inputs and subsequent coastal eutrophication, associated with an enrichment in organic matter (OM) from algal and sewage sources and substantial changes in greenhouse gas (GHG) emissions. However, the effects of nitrogen (N) and phosphorus (P) enrichment on mangrove soil OM composition and GHG emissions, such as methane (CH4) and carbon dioxide (CO2), are still poorly understood. Here, we aim to evaluate the relationships between CO2 and CH4 efflux with OM composition in exposed soils from three mangrove areas along watersheds with different urbanization levels (Rio de Janeiro State, Brazil). To assess spatial (lower vs. upper intertidal zones) and seasonal (summer vs. winter) variability, we measured soil-air CO2 and CH4 fluxes at low spring tide, analyzing elementary (C, N, and P), isotopic (δ13C and δ15N), and the molecular (n-alkanes and sterols) composition of surface soil OM. A general trend of OM composition was found with increasing urban influence, with higher δ15N (proxy of anthropogenic N enrichment), less negative δ13C, more short-chain n-alkanes, lower C:N ratio (proxies of algal biomass), and higher epicoprostanol content (proxies of sewage-derived OM). The CO2 efflux from exposed soils increased greatly in median (25/75 % interquartile range) from 4.6 (2.9/8.3) to 24.0 (21.5/32.7) mmol m-2 h-1 from more pristine to more urbanized watersheds, independent of intertidal zone and seasonality. The CO2 fluxes at the most eutrophicated site were among the highest reported worldwide for mangrove soils. Conversely, CH4 emissions were relatively low (three orders of magnitude lower than CO2 fluxes), with high peaks in the lower intertidal zone during the rainy summer. Thus, our findings demonstrate the influence of coastal eutrophication on global warming potentials related to enhanced heterotrophic remineralization of blue carbon within mangrove soils.


Asunto(s)
Gases de Efecto Invernadero , Metano , Brasil , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Eutrofización , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Fósforo , Aguas del Alcantarillado , Suelo , Esteroles , Humedales
6.
Environ Sci Pollut Res Int ; 28(28): 38173-38192, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33723789

RESUMEN

Increasing eutrophication of coastal waters generates disturbances in greenhouse gas (GHG) concentrations and emissions to the atmosphere that are still poorly documented, particularly in the tropics. Here, we investigated the concentrations and diffusive fluxes of carbon dioxide (CO2) and methane (CH4) in the urban-dominated Jacarepagua Lagoon Complex (JLC) in Southeastern Brazil. This lagoonal complex receives highly polluted freshwater and shows frequent occurrences of anoxia and hypoxia and dense phytoplankton blooms. Between 2017 and 2018, four spatial surveys were performed (dry and wet conditions), with sampling in the river waters that drain the urban watershed and in the lagoon waters with increasing salinities. Strong oxygen depletion was found in the rivers, associated with extremely high values of partial pressure of CO2 (pCO2; up to 20,417 ppmv) and CH4 concentrations (up to 288,572 nmol L-1). These high GHG concentrations are attributed to organic matter degradation from untreated domestic effluents mediated by aerobic and anaerobic processes, with concomitant production of total alkalinity (TA) and dissolved inorganic carbon (DIC). In the lagoon, GHG concentrations decreased mainly due to dilution with seawater and degassing. In addition, the phytoplankton growth and CH4 oxidation apparently consumed some CO2 and CH4, respectively. TA concentrations showed a marked minimum at salinity of ~20 compared to the two freshwater and marine end members, indicating processes of re-oxidation of inorganic reduced species from the low-salinity region, such as ammonia, iron, and/or sulfides. Diffusive emissions of gases from the entire lagoon ranged from 22 to 48 mmol C m-2 d-1 for CO2 and from 2.2 to 16.5 mmol C m-2 d-1 for CH4. This later value is among the highest documented in coastal waters. In terms of global warming potential (GWP) and CO2 equivalent emissions (CO2-eq), the diffusive emissions of CH4 were higher than those of CO2. These results highlight that highly polluted coastal ecosystems are hotspots of GHG emissions to the atmosphere, which may become increasingly significant in future global carbon budgets.


Asunto(s)
Gases de Efecto Invernadero , Brasil , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis
7.
Sci Total Environ ; 661: 613-629, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30682612

RESUMEN

During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils, groundwater, and at the groundwater-surface water interface as well as in stream channels and stream sediments. However, processes and factors controlling these transfers and transformations are not well constrained, particularly with respect to land use effect. We compared C and IN concentrations in shallow groundwater and first-order streams of a sandy lowland catchment dominated by two types of land use: pine forest and maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic conditions all-year round as a result of higher evapotranspiration and better lateral drainage that decreased the water table below the organic-rich soil horizon, prevented the leaching of soil-generated dissolved organic carbon (DOC) in groundwater, and thus limited consumption of dissolved oxygen (O2). In crop groundwater, oxic conditions inhibited denitrification and methanogenesis resulting in high nitrate (NO3-; on average 1140 ±â€¯485 µmol L-1) and low methane (CH4; 40 ±â€¯25 nmol L-1) concentrations. Conversely, anoxic conditions in forest groundwater led to lower NO3- (25 ±â€¯40 µmol L-1) and higher CH4 (1770 ±â€¯1830 nmol L-1) concentrations. The partial pressure of carbon dioxide (pCO2; 30,650 ±â€¯11,590 ppmv) in crop groundwater was significantly lower than in forest groundwater (50,630 ±â€¯26,070 ppmv), and was apparently caused by the deeper water table delaying downward diffusion of soil CO2 to the water table. In contrast, pCO2 was not significantly different in crop (4480 ±â€¯2680 ppmv) and forest (4900 ±â€¯4500 ppmv) streams, suggesting faster degassing in forest streams resulting from greater water turbulence. Although NO3-concentrations indicated that denitrification occurred in riparian-forest groundwater, crop streams nevertheless exhibited important signs of spring and summer eutrophication such as the development of macrophytes. Stream eutrophication favored development of anaerobic conditions in crop stream sediments, as evidenced by increased ammonia (NH4+) and CH4 in stream waters and concomitant decreased in NO3- concentrations as a result of sediment denitrification. In crop streams, dredging and erosion of streambed sediments during winter sustained high concentration of particulate organic C, NH4+ and CH4. In forest streams, dissolved iron (Fe2+), NH4+ and CH4 were negatively correlated with O2 reflecting the gradual oxygenation of stream water and associated oxidations of Fe2+, NH4+ and CH4. The results overall showed that forest groundwater behaved as source of CO2 and CH4 to streams, the intensity depending on the hydrological connectivity among soils, groundwater, and streams. CH4 production was prevented in cropland in soils and groundwater, however crop groundwater acted as a source of CO2 to streams (but less so than forest groundwater). Conversely, in streams, pCO2 was not significantly affected by land use while CH4 production was enhanced by cropland. At the catchment scale, this study found substantial biogeochemical heterogeneity in C and IN concentrations between forest and crop waters, demonstrating the importance of including the full vegetation-groundwater-stream continuum when estimating land-water fluxes of C (and nitrogen) and attempting to understand their spatial and temporal dynamics.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente , Granjas , Bosques , Agua Subterránea/análisis , Ríos , Embryophyta/fisiología , Francia , Pinus/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
8.
Environ Sci Pollut Res Int ; 25(32): 31957-31970, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30218334

RESUMEN

Projections for the next 50 years predict a widespread distribution of hypoxic zones in the open and coastal ocean due to environmental and global changes. The Tidal Garonne River (SW France) has already experienced few episodic hypoxic events. However, predicted future climate and demographic changes suggest that summer hypoxia could become more severe and even permanent near the city of Bordeaux in the next few decades. A 3D model, which couples hydrodynamic, sediment transport, and biogeochemical processes, is applied to assess the impact of factors submitted to global and regional climate changes on oxygenation in the turbidity maximum zone (TMZ) of the Tidal Garonne River during low-discharge periods. The model simulates an intensification of summer hypoxia with an increase in temperature, a decrease in river flow or an increase in the local population, but not with sea level rise, which has a negligible impact on dissolved oxygen. Different scenarios were tested by combining these different factors according to the regional projections for 2050 and 2100. All the simulations showed a trend toward a spatial and temporal extension of summer hypoxia that needs to be considered by local water authorities to impose management strategies to protect the ecosystem.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Contaminación del Agua/estadística & datos numéricos , Ecosistema , Francia , Oxígeno/análisis , Ríos , Estaciones del Año , Temperatura
9.
Front Plant Sci ; 9: 1781, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559756

RESUMEN

Exotic hydrophytes are often considered as aquatic weeds, especially when forming dense mats on an originally poorly colonized environment. While management efforts and research are focused on the control and on the impacts of aquatic weeds on biodiversity, their influence on shallow lakes' biogeochemical cycles is still unwell explored. The aim of the present study is to understand whether invasive aquatic plants may affect the biogeochemistry of shallow lakes and act as ecosystem engineers. We performed a multi-year investigation (2013-2015) of dissolved biogeochemical parameters in an oligo-mesotrophic shallow lake of south-west of France (Lacanau Lake), where wind-sheltered bays are colonized by dense mats of exotic Egeria densa Planch. and Lagarosiphon major (Ridl.) Moss. We collected seasonal samples at densely vegetated and plant-free areas, in order to extrapolate and quantify the role of the presence of invasive plants on the biogeochemistry, at the macrophyte stand scale and at the lake scale. Results revealed that elevated plant biomass triggers oxygen (O2), dissolved inorganic carbon (DIC) and nitrogen (DIN) stratification, with hypoxia events frequently occurring at the bottom of the water column. Within plants bed, elevated respiration rates generated important amounts of carbon dioxide (CO2), methane (CH4) and ammonium (NH4 +). The balance between benthic nutrients regeneration and fixation into biomass results strictly connected to the seasonal lifecycle of the plants. Indeed, during summer, DIC and DIN regenerated from the sediment are quickly fixed into plant biomass and sustain elevated growth rates. On the opposite, in spring and autumn, bacterial and plant respiration overcome nutrients fixation, resulting in an excess of nutrients in the water and in the increase of carbon emission toward the atmosphere. Our study suggests that aquatic weeds may perform as ecosystem engineers, by negatively affecting local oxygenation and by stimulating nutrients regeneration.

10.
Mar Pollut Bull ; 129(2): 729-739, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29102070

RESUMEN

The dynamics of the aragonite saturation state (Ωarag) were investigated in the eutrophic coastal waters of Guanabara Bay (RJ-Brazil). Large phytoplankton blooms stimulated by a high nutrient enrichment promoted the production of organic matter with strong uptake of dissolved inorganic carbon (DIC) in surface waters, lowering the concentrations of dissolved carbon dioxide (CO2aq), and increasing the pH, Ωarag and carbonate ion (CO32-), especially during summer. The increase of Ωarag related to biological activity was also evident comparing the negative relationship between the Ωarag and the apparent utilization of oxygen (AOU), with a very close behavior between the slopes of the linear regression and the Redfield ratio. The lowest values of Ωarag were found at low-buffered waters in regions that receive direct discharges from domestic effluents and polluted rivers, with episodic evidences of corrosive waters (Ωarag<1). This study showed that the eutrophication controlled the variations of Ωarag in Guanabara Bay.


Asunto(s)
Bahías/química , Carbonato de Calcio/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Eutrofización , Fitoplancton/crecimiento & desarrollo , Brasil , Concentración de Iones de Hidrógeno , Ríos/química , Estaciones del Año , Agua de Mar/química , Solubilidad
11.
Sci Total Environ ; 354(2-3): 246-51, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16398998

RESUMEN

An equilibrator system connected to an infrared photo acoustic gas analyzer was used in order to measure directly in situ the concentrations of dissolved CO2 and CH4 in waters of a tropical reservoir (Petit Saut, French Guiana). The performance of the system was tested both on a vertical profile in the stratified water body of the reservoir and in the surface waters of the river downstream the dam. Results agreed with conventional GC analysis at +/-15% in a wide range of concentrations (CO2:50-400 micromol l-1 and CH4:0.5-350 micromol l-1 corresponding to gas partial pressures of respectively 1700-13,000 and 12-8800 microatm). The time needed for in situ measurements was equivalent to water sampling, time for GC analysis in the laboratory being suppressed. The continuous monitoring of gas concentrations for 24 h in the reservoir surface waters revealed rapid changes in concentrations highly significant in the daily emission budget. The system opens new perspectives for the monitoring of gas concentrations in highly dynamic systems like tropical reservoirs.


Asunto(s)
Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Metano/análisis , Monitoreo del Ambiente/instrumentación , Agua Dulce/análisis , Efecto Invernadero , Clima Tropical , Abastecimiento de Agua/análisis
12.
Sci Rep ; 5: 15614, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26494107

RESUMEN

Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

13.
Front Microbiol ; 6: 1054, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483776

RESUMEN

We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2-23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality.

14.
Environ Sci Process Impacts ; 15(3): 585-95, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23738357

RESUMEN

Dissolved oxygen (DO) is a fundamental parameter of coastal water quality, as it is necessary to aquatic biota, and it provides an indication of organic matter decomposition in waters and their degree of eutrophication. We present here a 7 year time series of DO concentration and ancillary parameters (river discharge, water level, turbidity, temperature, and salinity) from the MAGEST high-frequency monitoring network, at four automated stations in the central and fluvial regions of the macrotidal Gironde Estuary, one of the largest European estuaries. The spatio-temporal variability of DO at different time scales was first related to the migration and position of the maximum turbidity zone in this extremely turbid estuary. Since 2005, the Gironde Estuary has recorded several borderline hypoxic situations (DO close to 2 mg L(-1)) and a 7 day-long hypoxic event (DO < 2 mg L(-1)) in July 2006. Summer hypoxia occurred exclusively in the fluvial, low salinity, and high turbidity sections of the estuary and was significantly more pronounced in front of the large urban area of Bordeaux (715 000 inhabitants). Detailed analysis of the data at the seasonal, neap-spring and semi-diurnal tidal time scales, reveals that hypoxia in this area occurred: (i) in the maximum turbidity zone; (ii) during the spring to neap tide transition; (iii) at highest water temperature; and (iv) at lowest river discharge; there was also evidence of an additional negative impact of sewage treatment plants of Bordeaux city. Enhancement of respiration by turbidity, temperature and inputs of domestic biodegradable organic matter and ammonia, versus renewal of waters and dispersion of reduced pollutants with the river discharge, appeared as the dominant antagonist processes that controlled the occurrence of summer hypoxia. In the context of long-term environmental changes (increase in temperature and population, decrease in summer river discharge), the occurrence of severe hypoxia could not be excluded in the next decades in the upstream reach of the Gironde Estuary.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Oxígeno/análisis , Eutrofización , Francia , Ríos/química , Estaciones del Año , Calidad del Agua
15.
Front Microbiol ; 4: 228, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966986

RESUMEN

Suspended particulate matter (SPM) was collected along the Amazon River in the central Amazon basin and in three tributaries during the rising water (RW), high water (HW), falling water (FW) and low water (LW) season. Changes in the concentration and the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), i.e., the methylation index of branched tetraethers (MBT) and the cyclization of brGDGTs (CBT), were seen in the Amazon main stem. The highest concentration of core lipid (CL) brGDGTs normalized to particulate organic carbon (POC) was found during the HW season. During the HW season the MBT and CBT in the Amazon main stem was also most similar to that of lowland Amazon (terra firme) soils, indicating that the highest input of soil-derived brGDGTs occurred due to increased water runoff. During the other seasons the MBT and CBT indicated an increased influence of in situ production of brGDGTs even though soils remained the main source of brGDGTs. Our results reveal that the influence of seasonal variation is relatively small, but can be clearly detected. Crenarchaeol was mostly produced in the river. Its concentration was lower during the HW season compared to that of the other seasons. Hence, our study shows the complexity of processes that influence the GDGT distribution during the transport from land to ocean. It emphasizes the importance of a detailed study of a river basin to interpret the MBT/CBT and BIT records for paleo reconstructions in adjacent marine setting.

16.
PLoS One ; 7(9): e46141, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029412

RESUMEN

One of the greatest challenges in understanding the Amazon basin functioning is to ascertain the role played by floodplains in the organic matter (OM) cycle, crucial for a large spectrum of ecological mechanisms. Fatty acids (FAs) were combined with environmental descriptors and analyzed through multivariate and spatial tools (asymmetric eigenvector maps, AEM and principal coordinates of neighbor matrices, PCNM). This challenge allowed investigating the distribution of suspended particulate organic matter (SPOM), in order to trace its seasonal origin and quality, along a 800 km section of the Amazon river-floodplain system. Statistical analysis confirmed that large amounts of saturated FAs (15:0, 18:0, 24:0, 25:0 and 26:0), an indication of refractory OM, were concomitantly recorded with high pCO(2) in rivers, during the high water season (HW). Contrastingly, FAs marker which may be attributed in this ecosystem to aquatic plants (18:2ω6 and 18:3ω3) and cyanobacteria (16:1ω7), were correlated with higher O(2), chlorophyll a and pheopigments in floodplains, due to a high primary production during low waters (LW). Decreasing concentrations of unsaturated FAs, that characterize labile OM, were recorded during HW, from upstream to downstream. Furthermore, using PCNM and AEM spatial methods, FAs compositions of SPOM displayed an upstream-downstream gradient during HW, which was attributed to OM retention and the extent of flooded forest in floodplains. Discrimination of OM quality between the Amazon River and floodplains corroborate higher autotrophic production in the latter and transfer of OM to rivers at LW season. Together, these gradients demonstrate the validity of FAs as predictors of spatial and temporal changes in OM quality. These spatial and temporal trends are explained by 1) downstream change in landscape morphology as predicted by the River Continuum Concept; 2) enhanced primary production during LW when the water level decreased and its residence time increased as predicted by the Flood Pulse Concept.


Asunto(s)
Ácidos Grasos/análisis , Sustancias Húmicas/análisis , Ríos/química , Ecosistema , Hidrobiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA