Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur Radiol ; 34(3): 1461-1470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658893

RESUMEN

OBJECTIVES: To evaluate the association between fat infiltration in skeletal muscles (myosteatosis) and hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: In a cross-sectional cohort of 72 histologically proven NAFLD patients (n = 38 with non-alcoholic steatohepatitis; NASH), among which 20 had HCC diagnosed on biopsy, we used proton density fat fraction (PDFF) at MRI to evaluate myosteatosis in skeletal muscles (mean fat fraction and first order radiomic-based pattern) at the third lumbar level, namely in erector spinae (ES), quadratus lumborum (QL), psoas, oblique, and rectus muscles. RESULTS: PDFFES was 70% higher in patients with HCC when compared to those without HCC (9.6 ± 5.5% versus 5.7 ± 3.0%, respectively, p < 0.001). In multivariate logistic regression, PDFFES was a significant predictor of the presence of HCC (AUC = 0.72, 95% CI 0.57-0.86, p = 0.002) independently from age, sex, visceral fat area, and liver fibrosis stage (all p < 0.05). The relationship between PDFFES and HCC was exacerbated in patients with NASH (AUC = 0.79, 95% CI 0.63-0.86, p = 0.006). In patients with NASH, radiomics features of heterogeneity such as energy and entropy in any of the paraspinal muscles (i.e., ES, QL, or psoas) were independent predictors of HCC. EnergyES identified patients with HCC (n = 13) in the NASH population with AUC = 0.92 (95% CI 0.82-1.00, p < 0.001). CONCLUSION: In patients with NAFLD, and more specifically in those with NASH, the degree and heterogeneity of myosteatosis is independently associated with HCC irrespective of liver fibrosis stage. CLINICAL RELEVANCE STATEMENT: Our data suggest that myosteatosis could be used as a biomarker of HCC in the ever-expanding NAFLD population and pave the way for further investigation in longitudinal studies. KEY POINTS: • HCC in patients with non-alcoholic fatty liver disease, and more specifically in those with non-alcoholic steatohepatitis, is independently associated with severe fatty infiltration (myosteatosis) of paravertebral skeletal muscles. • Association between myosteatosis and HCC is independent from liver fibrosis stage. • Histogram-based radiomics features of myosteatosis predicts the risk of HCC in patients with non-alcoholic steatohepatitis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Estudios Transversales , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Hígado/patología , Cirrosis Hepática/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología
2.
Chem Rev ; 122(6): 6719-6748, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35179885

RESUMEN

Motions in biomolecules are critical for biochemical reactions. In cells, many biochemical reactions are executed inside of biomolecular condensates formed by ultradynamic intrinsically disordered proteins. A deep understanding of the conformational dynamics of intrinsically disordered proteins in biomolecular condensates is therefore of utmost importance but is complicated by diverse obstacles. Here we review emerging data on the motions of intrinsically disordered proteins inside of liquidlike condensates. We discuss how liquid-liquid phase separation modulates internal motions across a wide range of time and length scales. We further highlight the importance of intermolecular interactions that not only drive liquid-liquid phase separation but appear as key determinants for changes in biomolecular motions and the aging of condensates in human diseases. The review provides a framework for future studies to reveal the conformational dynamics of intrinsically disordered proteins in the regulation of biomolecular condensate chemistry.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Condensados Biomoleculares , Humanos , Proteínas Intrínsecamente Desordenadas/química , Conformación Molecular
3.
Chem Rev ; 122(10): 9331-9356, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35446534

RESUMEN

Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Termodinámica
4.
Chemistry ; 29(17): e202203493, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36579699

RESUMEN

Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas tau , Temperatura , Conformación Proteica , Espectroscopía de Resonancia Magnética , Proteínas Intrínsecamente Desordenadas/química , Amidas
5.
J Am Chem Soc ; 141(44): 17817-17829, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31591893

RESUMEN

Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , MAP Quinasa Quinasa 4/química , Nucleoproteínas/química , Proteínas Virales/química , Animales , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Oocitos/química , Conformación Proteica , Dominios Proteicos , Virus Sendai/química , Xenopus laevis
6.
Angew Chem Int Ed Engl ; 56(45): 14020-14024, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28834051

RESUMEN

The dynamic fluctuations of intrinsically disordered proteins (IDPs) define their function. Although experimental nuclear magnetic resonance (NMR) relaxation reveals the motional complexity of these highly flexible proteins, the absence of physical models describing IDP dynamics hinders their mechanistic interpretation. Combining molecular dynamics simulation and NMR, we introduce a framework in which distinct motions are attributed to local libration, backbone dihedral angle dynamics and longer-range tumbling of one or more peptide planes. This model provides unique insight into segmental organization of dynamics in IDPs and allows us to investigate the presence and extent of the correlated motions that are essential for function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica
7.
J Am Chem Soc ; 138(19): 6240-51, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27112095

RESUMEN

The dynamic modes and time scales sampled by intrinsically disordered proteins (IDPs) define their function. Nuclear magnetic resonance (NMR) spin relaxation is probably the most powerful tool for investigating these motions delivering site-specific descriptions of conformational fluctuations from throughout the molecule. Despite the abundance of experimental measurement of relaxation in IDPs, the physical origin of the measured relaxation rates remains poorly understood. Here we measure an extensive range of auto- and cross-correlated spin relaxation rates at multiple magnetic field strengths on the C-terminal domain of the nucleoprotein of Sendai virus, over a large range of temperatures (268-298 K), and combine these data to describe the dynamic behavior of this archetypal IDP. An Arrhenius-type relationship is used to simultaneously analyze up to 61 relaxation rates per amino acid over the entire temperature range, allowing the measurement of local activation energies along the chain, and the assignment of physically distinct dynamic modes. Fast (τ ≤ 50 ps) components report on librational motions, a dominant mode occurs on time scales around 1 ns, apparently reporting on backbone sampling within Ramachandran substates, while a slower component (5-25 ns) reports on segmental dynamics dominated by the chain-like nature of the protein. Extending the study to three protein constructs of different lengths (59, 81, and 124 amino acids) substantiates the assignment of these contributions. The analysis is shown to be remarkably robust, accurately predicting a broad range of relaxation data measured at different magnetic field strengths and temperatures. The ability to delineate intrinsic modes and time scales from NMR spin relaxation will improve our understanding of the behavior and function of IDPs, adding a new and essential dimension to the description of this biologically important and ubiquitous class of proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/síntesis química , Algoritmos , Campos Electromagnéticos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Método de Montecarlo , Resonancia Magnética Nuclear Biomolecular , Nucleoproteínas/síntesis química , Nucleoproteínas/química , Conformación Proteica , Reproducibilidad de los Resultados , Virus Sendai/química , Temperatura
8.
Sci Adv ; 5(6): eaax2348, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31259246

RESUMEN

Protein and water dynamics have a synergistic relationship, which is particularly important for intrinsically disordered proteins (IDPs), although the details of this coupling remain poorly understood. Here, we combine temperature-dependent molecular dynamics simulations using different water models with extensive nuclear magnetic resonance (NMR) relaxation to examine the importance of distinct modes of solvent and solute motion for the accurate reproduction of site-specific dynamics in IDPs. We find that water dynamics play a key role in motional processes internal to "segments" of IDPs, stretches of primary sequence that share dynamic properties and behave as discrete dynamic units. We identify a relationship between the time scales of intrasegment dynamics and the lifetime of hydrogen bonds in bulk water. Correct description of these motions is essential for accurate reproduction of protein relaxation. Our findings open important perspectives for understanding the role of hydration water on the behavior and function of IDPs in solution.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Solventes/química , Enlace de Hidrógeno , Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Temperatura , Agua/química
9.
Prog Nucl Magn Reson Spectrosc ; 102-103: 43-60, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29157493

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for understanding fundamental biological processes, the molecular basis of their activity still remains largely unknown. The functional mechanisms exploited by IDPs in their interactions with other biomolecules are defined by their intrinsic dynamic modes and associated timescales, justifying the considerable interest over recent years in the development of technologies adapted to measure and describe this behaviour. NMR spin relaxation delivers information-rich, site-specific data reporting on conformational fluctuations occurring throughout the molecule. Here we review recent progress in the use of 15N relaxation to identify local backbone dynamics and long-range chain-like motions in unfolded proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética/métodos , Cinética , Modelos Moleculares , Conformación Proteica , Proteoma/química , Termodinámica
10.
J Phys Chem Lett ; 7(13): 2483-9, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27300592

RESUMEN

Intrinsically disordered proteins (IDPs) access highly diverse ensembles of conformations in their functional states. Although this conformational plasticity is essential to their function, little is known about the dynamics underlying interconversion between accessible states. Nuclear magnetic resonance (NMR) relaxation rates contain a wealth of information about the time scales and amplitudes of motion in IDPs, but the highly dynamic nature of IDPs complicates their interpretation. We present a novel framework in which a series of molecular dynamics (MD) simulations are used in combination with experimental (15)N relaxation measurements to characterize the ensemble of dynamic processes contributing to the observed rates. By accounting for the distinct dynamic averaging present in the different conformational states sampled by the equilibrium ensemble, we are able to accurately describe both dynamic time scales and local and global conformational sampling. The method is robust, systematically improving agreement with independent experimental relaxation data, irrespective of the actively targeted rates, and suggesting interdependence of motions occurring on time scales varying over 3 orders of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA