Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34528691

RESUMEN

The germ cell lineage in mammals is induced by the stimulation of pluripotent epiblast cells by signaling molecules. Previous studies have suggested that the germ cell differentiation competence or responsiveness of epiblast cells to signaling molecules is established and maintained in epiblast cells of a specific differentiation state. However, the molecular mechanism underlying this process has not been well defined. Here, using the differentiation model of mouse epiblast stem cells (EpiSCs), we have shown that two defined EpiSC lines have robust germ cell differentiation competence. However, another defined EpiSC line has no competence. By evaluating the molecular basis of EpiSCs with distinct germ cell differentiation competence, we identified YAP, an intracellular mediator of the Hippo signaling pathway, as crucial for the establishment of germ cell induction. Strikingly, deletion of YAP severely affected responsiveness to inductive stimuli, leading to a defect in WNT target activation and germ cell differentiation. In conclusion, we propose that the Hippo/YAP signaling pathway creates a potential for germ cell fate induction via mesodermal WNT signaling in pluripotent epiblast cells.


Asunto(s)
Células Germinativas/metabolismo , Estratos Germinativos/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Femenino , Vía de Señalización Hippo/fisiología , Masculino , Ratones , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología
2.
EMBO Rep ; 22(8): e52553, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34156139

RESUMEN

Fine-tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co-localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.


Asunto(s)
Células Germinativas , Mesodermo , Diferenciación Celular , Separación Celular , Factores de Transcripción
3.
Cell ; 132(5): 771-82, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329364

RESUMEN

Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinesinas/metabolismo , Membrana Nuclear/metabolismo , Anafase , Animales , Blastómeros/metabolismo , Cruzamientos Genéticos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Células HeLa , Humanos , Masculino , Ratones , Telofase
4.
Mol Cell ; 52(3): 380-92, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24120664

RESUMEN

Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Factores de Transcripción SOXB1/metabolismo , Trofoblastos/metabolismo , Animales , Línea Celular , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXB1/inmunología , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción AP-2/metabolismo , Trofoblastos/citología
5.
BMC Genomics ; 18(1): 964, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233090

RESUMEN

BACKGROUND: DNA methylation at promoters is largely correlated with inhibition of gene expression. However, the role of DNA methylation at enhancers is not fully understood, although a crosstalk with chromatin marks is expected. Actually, there exist contradictory reports about positive and negative correlations between DNA methylation and H3K4me1, a chromatin hallmark of enhancers. RESULTS: We investigated the relationship between DNA methylation and active chromatin marks through genome-wide correlations, and found anti-correlation between H3K4me1 and H3K4me3 enrichment at low and intermediate DNA methylation loci. We hypothesized "seesaw" dynamics between H3K4me1 and H3K4me3 in the low and intermediate DNA methylation range, in which DNA methylation discriminates between enhancers and promoters, marked by H3K4me1 and H3K4me3, respectively. Low methylated regions are H3K4me3 enriched, while those with intermediate DNA methylation levels are progressively H3K4me1 enriched. Additionally, the enrichment of H3K27ac, distinguishing active from primed enhancers, follows a plateau in the lower range of the intermediate DNA methylation level, corresponding to active enhancers, and decreases linearly in the higher range of the intermediate DNA methylation. Thus, the decrease of the DNA methylation switches smoothly the state of the enhancers from a primed to an active state. We summarize these observations into a rule of thumb of one-out-of-three methylation marks: "In each genomic region only one out of these three methylation marks {DNA methylation, H3K4me1, H3K4me3} is high. If it is the DNA methylation, the region is inactive. If it is H3K4me1, the region is an enhancer, and if it is H3K4me3, the region is a promoter". To test our model, we used available genome-wide datasets of H3K4 methyltransferases knockouts. Our analysis suggests that CXXC proteins, as readers of non-methylated CpGs would regulate the "seesaw" mechanism that focuses H3K4me3 to unmethylated sites, while being repulsed from H3K4me1 decorated enhancers and CpG island shores. CONCLUSIONS: Our results show that DNA methylation discriminates promoters from enhancers through H3K4me1-H3K4me3 seesaw mechanism, and suggest its possible function in the inheritance of chromatin marks after cell division. Our analyses suggest aberrant formation of promoter-like regions and ectopic transcription of hypomethylated regions of DNA. Such mechanism process can have important implications in biological process in where it has been reported abnormal DNA methylation status such as cancer and aging.


Asunto(s)
Metilación de ADN , Elementos de Facilitación Genéticos , Código de Histonas , Regiones Promotoras Genéticas , Animales , Citosina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Histonas/metabolismo , Ratones , Dominios Proteicos
6.
Nature ; 460(7251): 118-22, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19571885

RESUMEN

The cytokine leukaemia inhibitory factor (LIF) integrates signals into mouse embryonic stem (ES) cells to maintain pluripotency. Although the Jak-Stat3 pathway is essential and sufficient to mediate LIF signals, it is still unclear how these signals are linked to the core circuitry of pluripotency-associated transcription factors, consisting of Oct3/4 (also called Pou5f1), Sox2 and Nanog. Here we show that two LIF signalling pathways are each connected to the core circuitry via different transcription factors. In mouse ES cells, Klf4 is mainly activated by the Jak-Stat3 pathway and preferentially activates Sox2, whereas Tbx3 is preferentially regulated by the phosphatidylinositol-3-OH kinase-Akt and mitogen-activated protein kinase pathways and predominantly stimulates Nanog. In the absence of LIF, artificial expression of Klf4 or Tbx3 is sufficient to maintain pluripotency while maintaining the expression of Oct3/4. Notably, overexpression of Nanog supports LIF-independent self-renewal of mouse ES cells in the absence of Klf4 and Tbx3 activity. Therefore, Klf4 and Tbx3 are involved in mediating LIF signalling to the core circuitry but are not directly associated with the maintenance of pluripotency, because ES cells keep pluripotency without their expression in the particular context.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Animales , Línea Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Quinasas Janus/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Proteína Homeótica Nanog , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
7.
BMC Biotechnol ; 13: 64, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23919313

RESUMEN

BACKGROUND: Stable expression of transgenes is an important technique to analyze gene function. Various drug resistance genes, such as neo, pac, hph, zeo, bsd, and hisD, have been equally used as selection markers to isolate a transfectant without considering their dose-dependent characters. RESULTS: We quantitatively measured the variation of transgene expression levels in mouse embryonic stem (mES) cells, using a series of bi-cistronic expression vectors that contain Egfp expression cassette linked to each drug resistant gene via IRES with titration of the selective drugs, and found that the transgene expression levels achieved in each system with this vector design are in order, in which pac and zeo show sharp selection of transfectants with homogenously high expression levels. We also showed the importance of the choice of the drug selection system in gene-trap or gene targeting according to this order. CONCLUSIONS: The results of the present study clearly demonstrated that an appropriate choice of the drug resistance gene(s) is critical for a proper design of the experimental strategy.


Asunto(s)
Células Madre Embrionarias/fisiología , Marcación de Gen/métodos , Proteínas Recombinantes de Fusión/análisis , Transgenes , Animales , Biotecnología/métodos , Resistencia a Medicamentos/genética , Células Madre Embrionarias/metabolismo , Marcadores Genéticos/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Ratones , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Selección Genética
9.
Elife ; 112022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621159

RESUMEN

The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Animales , Cromatina/metabolismo , Redes Reguladoras de Genes , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Transcripción Genética
10.
Sci Adv ; 8(7): eabe4375, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171666

RESUMEN

Oct4 collaborates primarily with other transcriptional factors or coregulators to maintain pluripotency. However, how Oct4 exerts its function is still unclear. Here, we show that the Oct4 linker interface mediates competing yet balanced Oct4 protein interactions that are crucial for maintaining pluripotency. Oct4 linker mutant embryonic stem cells (ESCs) show decreased expression of self-renewal genes and increased expression of differentiation genes, resulting in impaired ESC self-renewal and early embryonic development. The linker mutation interrupts the balanced Oct4 interactome. In mutant ESCs, the interaction between Oct4 and Klf5 is decreased. In contrast, interactions between Oct4 and Cbx1, Ctr9, and Cdc73 are increased, disrupting the epigenetic state of ESCs. Control of the expression level of Klf5, Cbx1, or Cdc73 rebalances the Oct4 interactome and rescues the pluripotency of linker mutant ESCs, indicating that such factors interact with Oct4 competitively. Thus, we provide previously unidentified molecular insights into how Oct4 maintains pluripotency.

11.
Mol Cell Biol ; 27(6): 2202-14, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17242206

RESUMEN

Blastocyst formation during mammalian preimplantation development is a unique developmental process that involves lineage segregation between the inner cell mass and the trophectoderm. To elucidate the molecular mechanisms underlying blastocyst formation, we have functionally screened a subset of preimplantation embryo-associated transcripts by using small interfering RNA (siRNA) and identified Bysl (bystin-like) as an essential gene for this process. The development of embryos injected with Bysl siRNA was arrested just prior to blastocyst formation, resulting in a defect in trophectoderm differentiation. Silencing of Bysl by using an episomal short hairpin RNA expression vector inhibited proliferation of embryonic stem cells. Exogenously expressed Bysl tagged with a fluorescent protein was concentrated in the nucleolus with a diffuse nucleoplasmic distribution. Furthermore, the loss of Bysl function by using RNA interference or dominant negative mutants caused defects in 40S ribosomal subunit biogenesis. These findings provide evidence for a crucial role of Bysl as an integral factor for ribosome biogenesis and suggest a critical dependence of blastocyst formation on active translation machinery.


Asunto(s)
Blastocisto , Moléculas de Adhesión Celular/metabolismo , Proteínas Ribosómicas/biosíntesis , Animales , Secuencia de Bases , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Técnicas In Vitro , Ratones , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación/genética , ARN Interferente Pequeño/genética
12.
Nat Commun ; 11(1): 5499, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127892

RESUMEN

The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/ß-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/ß-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause. During this phase, the progressive changes in the epiblast architecture and Wnt signalling response show that diapause is not a stasis but instead is a dynamic process with underlying mechanisms that can appear redundant during transient embryogenesis.


Asunto(s)
Diapausa/fisiología , Células Madre Embrionarias/metabolismo , Receptores de Estrógenos/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Desarrollo Embrionario , Femenino , Estratos Germinativos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Estrógenos/genética , beta Catenina/genética
13.
Sci Adv ; 6(36)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917606

RESUMEN

OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells. OCT6-based reprogramming does not alter the mesenchymal-epithelial transition but is attenuated through the delayed activation of the pluripotency network in comparison with OCT4-based reprogramming. Creating a series of reciprocal domain-swapped chimeras and mutants across all OCT factors, we clearly delineate essential elements of OCT4/OCT6-dependent reprogramming and, conversely, identify the features that prevent induction of pluripotency by other OCT factors. With this strategy, we further discover various chimeric proteins that are superior to OCT4 in reprogramming. Our findings clarify how reprogramming competences of OCT factors are conferred through their structural components.

14.
Cell Stem Cell ; 25(6): 737-753.e4, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708402

RESUMEN

Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here, we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. SKM induction could partially activate the pluripotency network, even in Oct4-knockout fibroblasts. Importantly, reprogramming in the absence of exogenous Oct4 results in greatly improved developmental potential of iPSCs, determined by their ability to give rise to all-iPSC mice in the tetraploid complementation assay. Our data suggest that overexpression of Oct4 during reprogramming leads to off-target gene activation during reprogramming and epigenetic aberrations in resulting iPSCs and thereby bear major implications for further development and application of iPSC technology.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Análisis de Secuencia de ARN , Tetraploidía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Stem Cell Reports ; 12(3): 502-517, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773488

RESUMEN

Neuroinflammation is a hallmark of neurological disorders and is accompanied by the production of neurotoxic agents such as nitric oxide. We used stem cell-based phenotypic screening and identified small molecules that directly protected neurons from neuroinflammation-induced degeneration. We demonstrate that inhibition of CDK5 is involved in, but not sufficient for, neuroprotection. Instead, additional inhibition of GSK3ß is required to enhance the neuroprotective effects of CDK5 inhibition, which was confirmed using short hairpin RNA-mediated knockdown of CDK5 and GSK3ß. Quantitative phosphoproteomics and high-content imaging demonstrate that neurite degeneration is mediated by aberrant phosphorylation of multiple microtubule-associated proteins. Finally, we show that our hit compound protects neurons in vivo in zebrafish models of motor neuron degeneration and Alzheimer's disease. Thus, we demonstrate an overlap of CDK5 and GSK3ß in mediating the regulation of the neuronal cytoskeleton and that our hit compound LDC8 represents a promising starting point for neuroprotective drugs.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Citoesqueleto/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Degeneración Nerviosa/tratamiento farmacológico , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
16.
Cell Stem Cell ; 23(2): 266-275.e6, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29910149

RESUMEN

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.


Asunto(s)
Reprogramación Celular , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Masculino , Ratones , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo
17.
Stem Cell Reports ; 9(4): 1275-1290, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28919260

RESUMEN

Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-ß pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal , Animales , Biomarcadores , Masa Celular Interna del Blastocisto/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Metilación de ADN , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Interferencia de ARN , Transcriptoma
18.
Sci Rep ; 6: 19415, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26762895

RESUMEN

Adenoviral early region 1A (E1A) is a viral gene that can promote cellular proliferation and de-differentiation in mammalian cells, features required for the reprogramming of somatic cells to a pluripotent state. E1A has been shown to interact with OCT4, and as a consequence, to increase OCT4 transcriptional activity. Indeed, E1A and OCT4 are sufficient to revert neuroepithelial hybrids to pluripotency, as demonstrated in previous cell fusion experiments. However, the role that E1A might play in the generation of induced pluripotent stem cells (iPSCs) has not been investigated yet. In this report, we show that E1A can generate iPSCs in combination with OCT4 and KLF4, thus replacing exogenous SOX2. The generated iPSCs are bona fide pluripotent cells as shown by in vitro and in vivo tests. Overall, our study suggests that E1A might replace SOX2 through enhancing OCT4 transcriptional activity at the early stages of reprogramming.


Asunto(s)
Reprogramación Celular , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Activación Transcripcional , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/farmacología , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Fibroblastos , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones , Factores de Transcripción SOXB1/farmacología
19.
Cell Stem Cell ; 18(3): 341-53, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26748419

RESUMEN

Cardiac induction requires stepwise integration of BMP and WNT pathway activity. Human embryonic stem cells (hESCs) are developmentally and clinically relevant for studying the poorly understood molecular mechanisms downstream of these cascades. We show that BMP and WNT signaling drive cardiac specification by removing sequential roadblocks that otherwise redirect hESC differentiation toward competing fates, rather than activating a cardiac program per se. First, BMP and WNT signals pattern mesendoderm through cooperative repression of SOX2, a potent mesoderm antagonist. BMP signaling promotes miRNA-877 maturation to induce SOX2 mRNA degradation, while WNT-driven EOMES induction transcriptionally represses SOX2. Following mesoderm formation, cardiac differentiation requires inhibition of WNT activity. We found that WNT inhibition serves to restrict expression of anti-cardiac regulators MSX1 and CDX2/1. Conversely, their simultaneous disruption partially abrogates the requirement for WNT inactivation. These results suggest that human cardiac induction depends on multi-stage repression of alternate lineages, with implications for deriving expandable cardiac stem cells.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Vía de Señalización Wnt , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
20.
Cell Rep ; 15(4): 814-829, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27149847

RESUMEN

Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps). However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK) dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA