Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(22): 226801, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34152183

RESUMEN

A spatially oscillating pair potential Δ(r)=Δ_{0}e^{2iK·r} with momentum K>Δ_{0}/ℏv drives a deconfinement transition of the Majorana bound states in the vortex cores of a Fu-Kane heterostructure (a 3D topological insulator with Fermi velocity v, on a superconducting substrate with gap Δ_{0}, in a perpendicular magnetic field). In the deconfined phase at zero chemical potential the Majorana fermions form a dispersionless Landau level, protected by chiral symmetry against broadening due to vortex scattering. The coherent superposition of electrons and holes in the Majorana Landau level is detectable as a local density of states oscillation with wave vector sqrt[K^{2}-(Δ_{0}/ℏv)^{2}]. The striped pattern also provides a means to measure the chirality of the Majorana fermions.

2.
Phys Rev Lett ; 122(14): 146803, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050475

RESUMEN

Majorana zero modes in a superconductor are midgap states localized in the core of a vortex or bound to the end of a nanowire. They are anyons with non-Abelian braiding statistics, but when they are immobile one cannot demonstrate this by exchanging them in real space and indirect methods are needed. As a real-space alternative, we propose to use the chiral motion along the boundary of the superconductor to braid a mobile vortex in the edge channel with an immobile vortex in the bulk. The measurement scheme is fully electrical and deterministic: edge vortices (π-phase domain walls) are created on demand by a voltage pulse at a Josephson junction and the braiding with a Majorana zero mode in the bulk is detected by the charge produced upon their fusion at a second Josephson junction.

3.
Phys Rev Lett ; 121(3): 037701, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085797

RESUMEN

The question whether the mixed phase of a gapless superconductor can support a Landau level is a celebrated problem in the context of d-wave superconductivity, with a negative answer: the scattering of the subgap excitations (massless Dirac fermions) by the vortex lattice obscures the Landau level quantization. Here we show that the same question has a positive answer for a Weyl superconductor: the chirality of the Weyl fermions protects the zeroth Landau level by means of a topological index theorem. As a result, the heat conductance parallel to the magnetic field has the universal value G=1/2g_{0}Φ/Φ_{0}, with Φ as the magnetic flux through the system, Φ_{0} as the superconducting flux quantum, and g_{0} as the thermal conductance quantum.

4.
Phys Rev Lett ; 118(20): 207701, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581792

RESUMEN

The massless fermions of a Weyl semimetal come in two species of opposite chirality, in two cones of the band structure. As a consequence, the current j induced in one Weyl cone by a magnetic field B [the chiral magnetic effect (CME)] is canceled in equilibrium by an opposite current in the other cone. Here, we show that superconductivity offers a way to avoid this cancellation, by means of a flux bias that gaps out a Weyl cone jointly with its particle-hole conjugate. The remaining gapless Weyl cone and its particle-hole conjugate represent a single fermionic species, with renormalized charge e^{*} and a single chirality ± set by the sign of the flux bias. As a consequence, the CME is no longer canceled in equilibrium but appears as a supercurrent response ∂j/∂B=±(e^{*}e/h^{2})µ along the magnetic field at chemical potential µ.

5.
Phys Rev Lett ; 108(23): 236601, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-23003980

RESUMEN

We investigate generic Hamiltonians for confined electrons with weak inhomogeneous spin-orbit coupling. Using a local gauge transformation we show how the SU(2) Hamiltonian structure reduces to a U(1)×U(1) structure for spinless fermions in a fictitious orbital magnetic field, to leading order in the spin-orbit strength. Using an Onsager relation, we further show how the resulting spin conductance vanishes in a two-terminal setup, and how it is turned on by either weakly breaking time-reversal symmetry or opening additional transport terminals, thus allowing one to switch the generated spin current on or off. We numerically check our theory for mesoscopic cavities as well as Aharonov-Bohm rings.

6.
Phys Rev Lett ; 105(24): 246807, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21231550

RESUMEN

We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-orbit interaction, we reproduce the random matrix theory results that the spin conductance fluctuates universally around zero average. Incorporating these effects into the theory, we show that geometric correlations generate finite average spin conductances, but that they do not affect the charge conductance to leading order. The theory, which is confirmed by numerical transport calculations, allows us to investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time.

7.
J Phys Condens Matter ; 21(15): 155503, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21825368

RESUMEN

We investigate spin-dependent transport in multiterminal mesoscopic cavities with spin-orbit coupling. Focusing on a three-terminal set-up we show how injecting a pure spin current or a polarized current from one terminal generates additional charge current and/or voltage across the two output terminals. When the injected current is a pure spin current, a single measurement allows us to extract the spin conductance of the cavity. The situation is more complicated for a polarized injected current, and we show in this case how two purely electrical measurements on the output currents give the amount of current that is solely due to spin-orbit interaction. This allows us to extract the spin conductance of the device in this case as well. We use random matrix theory to show that the spin conductance of chaotic ballistic cavities fluctuates universally about zero mesoscopic average and describe experimental implementations of mesoscopic spin to charge current converters.

8.
Phys Rev Lett ; 98(19): 196601, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17677643

RESUMEN

We investigate the spin Hall effect in ballistic chaotic quantum dots with spin-orbit coupling. We show that a longitudinal charge current can generate a pure transverse spin current. While this transverse spin current is generically nonzero for a fixed sample, we show that when the spin-orbit coupling time is short compared to the mean dwell time inside the dot, it fluctuates universally from sample to sample or upon variation of the chemical potential with a vanishing average.

9.
Phys Rev Lett ; 97(25): 256601, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17280374

RESUMEN

Detection of current-induced spin accumulation via ferromagnetic contacts is discussed. Onsager's relations forbid that in a two-probe configuration, spins excited by currents in time-reversal symmetric systems can be detected by switching the magnetization of a ferromangetic detector contact. Nevertheless, current-induced spins can be transferred as a torque to a contact magnetization and can affect the charge currents in many-terminal configurations. We demonstrate the general concepts by solving the microscopic transport equations for the diffuse Rashba system with magnetic contacts.

10.
Phys Rev Lett ; 89(23): 237002, 2002 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-12485030

RESUMEN

A semiclassical theory is developed for the appearance of an excitation gap in a ballistic chaotic cavity connected by a point contact to a superconductor. Diffraction at the point contact is a singular perturbation in the limit variant Planck's over 2pi -->0, which opens up a gap E(gap) in the excitation spectrum. The time scale variant Planck's over 2pi /E(gap) proportional, variant alpha(-1)ln( variant Planck's over 2pi (with alpha the Lyapunov exponent) is the Ehrenfest time, the characteristic time scale of quantum chaos.

11.
Phys Rev Lett ; 89(15): 154103, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12365991

RESUMEN

Quantum states extended over a large volume in phase space have oscillations from quantum interferences in their Wigner distribution on scales smaller than variant Planck's over 2pi [W. H. Zurek, Nature (London) 412, 712 (2001)]]. We investigate the influence of those sub-Planck-scale structures on the sensitivity to an external perturbation of the state's time evolution. While we do find an accelerated decay of the Loschmidt Echo for an extended state in comparison to a localized wave packet, the acceleration is described entirely by the classical Lyapunov exponent and hence cannot originate from quantum interference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA