Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Plant Physiol ; 191(3): 1913-1933, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36508356

RESUMEN

Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.


Asunto(s)
Modelos Genéticos , Olea , Tolerancia a la Sal , Olea/efectos de los fármacos , Olea/genética , Tolerancia a la Sal/genética , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Estrés Salino/genética , Proteómica , Transcriptoma/efectos de los fármacos , Aguas Salinas/farmacología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125799

RESUMEN

Drought significantly challenges global food security, necessitating a comprehensive understanding of plant molecular responses for effective mitigation strategies. Epigenetic modifications, such as DNA methylation and histone modifications, are key in regulating genes and hormones essential for drought response. While microRNAs (miRNAs) primarily regulate gene expression post-transcriptionally, they can also interact with epigenetic pathways as potential effectors that influence chromatin remodeling. Although the role of miRNAs in epigenetic memory is still being explored, understanding their contribution to drought response requires examining these indirect effects on epigenetic modifications. A key aspect of this exploration is epigenetic memory in drought-adapted plants, offering insights into the transgenerational inheritance of adaptive traits. Understanding the mechanisms that govern the maintenance and erasure of these epigenetic imprints provides nuanced insights into how plants balance stability and flexibility in their epigenomes. A major focus is on the dynamic interaction between hormonal pathways-such as those for abscisic acid (ABA), ethylene, jasmonates, and salicylic acid (SA)-and epigenetic mechanisms. This interplay is crucial for fine-tuning gene expression during drought stress, leading to physiological and morphological adaptations that enhance plant drought resilience. This review also highlights the transformative potential of advanced technologies, such as bisulfite sequencing and CRISPR-Cas9, in providing comprehensive insights into plant responses to water deficit conditions. These technologies pave the way for developing drought-tolerant crops, which is vital for sustainable agriculture.


Asunto(s)
Sequías , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo , Seguridad Alimentaria , Estrés Fisiológico/genética , MicroARNs/genética , MicroARNs/metabolismo , Metilación de ADN , Plantas/metabolismo , Plantas/genética , Adaptación Fisiológica/genética
3.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732261

RESUMEN

Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Transducción de Señal , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas/metabolismo , Plantas/genética
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
Physiol Plant ; 175(3): e13946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265389

RESUMEN

Boron modulates a wide range of plant developmental processes; however, the regulation of early fruit development by boron remains poorly defined. We report here the physiological, anatomical, metabolic, and transcriptomic impact of pre-flowering boron supply on the sweet cherry fruit set and development (S1-S5 stages). Our findings revealed that endogenous boron content increased in early growth stages (S1 and S2 stages) following preflowering boron exogenous application. Boron treatment resulted in increased fruit set (S1 and S2 stages) and mesocarp cell enlargement (S2 stage). Various sugars (e.g., fructose and glucose), alcohols (e.g., myo-inositol and maltitol), organic acids (e.g., malic acid and citric acid), amino acids (e.g., valine and serine) accumulated in response to boron application during the various developmental stages (S1-S5 stages). Transcriptomic analysis at early growth (S1 and S2 stages) identified boron-responsive genes that are mainly related to secondary metabolism, amino acid metabolism, calcium-binding, ribosome biogenesis, sugar homeostasis and especially to photosynthesis. We found various boron-induced/repressed genes, including those specifically involved in growth. Several heat shock proteins displayed distinct patterns during the initial growth in boron-exposed fruit. Gene analysis also discovered several putative candidate genes like PavPIP5K9, PavWAT1, PavMIOX, PavCAD1, PavPAL1 and PavSNRK2.7, which could facilitate the investigation of the molecular rationale underlying boron function in early fruit growth. Substantial changes in the expression of numerous transcription factors, including PavbHLH25, PavATHB.12L, and PavZAT10.1,.2 were noticed in fruits exposed to boron. The current study provides a baseline of information for understanding the metabolic processes regulated by boron during sweet cherry fruit early growth and fruit development in general.


Asunto(s)
Prunus avium , Frutas/genética , Frutas/metabolismo , Boro/análisis , Boro/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003254

RESUMEN

Plant growth-promoting microorganisms (PGPMs) have emerged as valuable allies for enhancing plant growth, health, and productivity across diverse environmental conditions. However, the complex molecular mechanisms governing plant-PGPM symbiosis under the climatic hazard of drought, which is critically challenging global food security, remain largely unknown. This comprehensive review explores the involved molecular interactions that underpin plant-PGPM partnerships during drought stress, thereby offering insights into hormonal regulation and epigenetic modulation. This review explores the challenges and prospects associated with optimizing and deploying PGPMs to promote sustainable agriculture in the face of drought stress. In summary, it offers strategic recommendations to propel research efforts and facilitate the practical implementation of PGPMs, thereby enhancing their efficacy in mitigating drought-detrimental effects in agricultural soils.


Asunto(s)
Sequías , Simbiosis , Estrés Fisiológico , Agricultura , Plantas/genética , Epigénesis Genética
7.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163270

RESUMEN

The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 µg L-1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 µg L-1 and that the protein content meets the requirements to be considered as a possible early warning "biomarker" for C. nodosa against BPA toxicity.


Asunto(s)
Alismatales/enzimología , Alismatales/genética , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Alismatales/efectos de los fármacos , Antioxidantes/farmacología , Catalasa/metabolismo , Citoesqueleto/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Región Mediterránea , Microtúbulos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo
8.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806045

RESUMEN

Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv'/Fm'). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.


Asunto(s)
Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Clorofila/farmacología , Peróxido de Hidrógeno/farmacología , Luz , Solanum lycopersicum/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/farmacología , Ácido Salicílico/farmacología
9.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232535

RESUMEN

Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.


Asunto(s)
Complejo de Proteína del Fotosistema II , Salvia , Clorofila , Humanos , Micronutrientes , Oxígeno , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Salvia/metabolismo , Zinc
10.
Ecotoxicol Environ Saf ; 209: 111851, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33421673

RESUMEN

The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 µM) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliot- and Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.


Asunto(s)
Cadmio/toxicidad , Salvia/fisiología , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Clorofila/metabolismo , Transporte de Electrón , Estrés Oxidativo/fisiología , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Salvia/metabolismo , Suelo
11.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573354

RESUMEN

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Pared Celular/metabolismo , Citocinesis/fisiología , Katanina/metabolismo , Arabidopsis/citología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/ultraestructura , Katanina/genética , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Proteínas Qa-SNARE/metabolismo
12.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348912

RESUMEN

Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC-) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.


Asunto(s)
Carcinógenos/toxicidad , Cianobacterias/metabolismo , Microcistinas/toxicidad , Microtúbulos/efectos de los fármacos , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo
13.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375193

RESUMEN

Five-day exposure of clary sage (Salvia sclarea L.) to 100 µM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.


Asunto(s)
Cadmio/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Salvia/efectos de los fármacos , Clorofila/metabolismo , Clorofila A/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Hormesis , Hidroponía/métodos , Microscopía Electrónica de Transmisión , Fotoquímica , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salvia/metabolismo
14.
Int J Mol Sci ; 20(21)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684028

RESUMEN

Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this "katanin deficiency" and eventually induce the necessary GC cell wall modifications to establish a feeding site.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Células Gigantes/metabolismo , Katanina/metabolismo , Raíces de Plantas/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Pared Celular/parasitología , Regulación de la Expresión Génica de las Plantas , Células Gigantes/parasitología , Interacciones Huésped-Parásitos , Katanina/genética , Microtúbulos/metabolismo , Mutación , Pectinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Polisacáridos/metabolismo , Tylenchoidea/fisiología
15.
Ecotoxicol Environ Saf ; 157: 431-440, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29655159

RESUMEN

Bisphenol A (BPA) is an emerging pollutant of environmental concern, classified as "moderately toxic" and "toxic", causing adverse effects on aquatic biota. Although information about BPA toxicity on aquatic fauna is available, the data about BPA effects on aquatic flora remain scarce, missing for marine macrophytes. The effects of environmentally relevant BPA concentrations (ranging from 0.03 to 3 µg L-1) on juvenile leaf elongation and the cytoskeleton (microtubules, MTs and actin filaments, AFs) were studied in the seagrass Cymodocea nodosa for 1-10 days. The suitability of cytoskeleton disturbance and leaf elongation impairment as "biomarkers" for BPA stress were tested. The highest BPA concentrations (0.3, 0.5, 1 and 3 µg L-1) affected significantly leaf elongation from the onset of the experiment, while defects of the cytoskeleton were observed even at lower concentrations. In particular, MTs were initially disrupted (i.e. "lowest observed effect concentrations", LOECs) at 0.1 µg L-1, while AFs were damaged even at 0.03 µg L-1. AFs appeared thus to be more sensitive to lower BPA concentrations, while there was a correlation between leaf elongation impairment and MT defects. Thus, AF damages, MT disruption and leaf elongation impairment in C. nodosa, in this particular order, appear to be sensitive "biomarkers" of BPA stress, at the above environmentally relevant BPA concentrations.


Asunto(s)
Alismatales/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Hojas de la Planta/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos
16.
Int J Mol Sci ; 16(7): 15852-71, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26184178

RESUMEN

Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided as 100 µM potassium dichromate (K2Cr2O7), in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2) production and peroxidase activity were found in Cr(VI)-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER) was less affected under Cr(VI) stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS)-correlated and the malformations observed are organelle specific.


Asunto(s)
Arabidopsis/metabolismo , Cromo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Peróxido de Hidrógeno/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Peroxidasas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
17.
Ecotoxicol Environ Saf ; 104: 175-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24681446

RESUMEN

The effects of lead uptake on microtubule integrity and cell viability in intermediate-juvenile leaf blades of the seagrass Cymodocea nodosa were investigated under laboratory conditions in increasing exposure concentrations (0.1, 0.25, 0.5, 5, 10, 20 and 40mg/L). Uptake kinetics was generally fitted well to the Michaelis-Menten equation. The equilibrium concentration and the velocity of lead uptake tended to increase as the exposure concentration increased up to 5-10mg/L; equilibrium concentration values at most of the treatments were comparable to reported lead concentrations in seagrass leaves. Lead caused a drastic change in the microtubule organization; microtubule depolymerization was observed after 3-7 days of exposure, depending on metal dosage. This observation indicates that microtubule integrity could be utilized as an early biomarker of emerging lead contamination. Cell death starting to occur at later time than microtubule disturbance was also observed at all of the treatments. Microtubule depolymerization expressed as percentage of fluorescence intensity reduction and cell mortality expressed as percentage of dead cells (blue stained) increased with time. Toxic effects were first detected during or at the beginning of the steady state-phase of lead uptake. The lowest experimental tissue lead concentrations associated with the onset of toxic effects (18.33-20.24µg/g dry wt, 0.1-0.25mg/L treatments, 7th day) were comparable to or lower than lead concentrations measured in leaves of C. nodosa and other seagrass species from various geographical areas, probably implying that lead may play a important role in the worldwide decline of seagrass meadows. These lowest tissue concentrations were exceeded up to the 3rd day of incubation at higher exposure concentrations, but microtubule depolymerization at 0.5mg/L and cell death at 0.5-20mg/L were first detected at later time. The time period required for the onset of microtubule depolymerization tended to decrease as lead uptake velocity increased; in particular, a significant negative correlation was found between these variables. These results suggest that the onset of toxicity appears to be related to lead uptake rate rather than to the total tissue lead concentration. Thereby, tissue residues should be interpreted in relation to the time frame of the exposure, while the estimation of metal uptake rate could be utilized for predicting toxic effects. The data presented provide insight on metal uptake kinetics, toxicological effects and their linkage in seagrasses, contribute to a better understanding of metal toxicity on aquatic organisms and could be utilized in biomonitoring programmes for the identification of ecotoxicologically significant metal accumulation in coastal environments.


Asunto(s)
Alismatales/efectos de los fármacos , Alismatales/metabolismo , Citoesqueleto/efectos de los fármacos , Plomo/metabolismo , Plomo/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/análisis , Supervivencia Celular/efectos de los fármacos , Plomo/análisis , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
18.
Physiol Plant ; 147(2): 169-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22607451

RESUMEN

Hexavalent chromium [Cr(VI)] is an accumulating environmental pollutant due to anthropogenic activities, toxic for humans, animals and plants. Therefore, the effects of Cr(VI) on dividing root cells of lentil (Lens culinaris) were investigated by tubulin immunofluorescence and DNA staining. In Cr(VI)-treated roots, cell divisions were perturbed, the chromosomes formed irregular aggregations, multinucleate cells were produced and tubulin clusters were entrapped within the nuclei. All cell cycle-specific microtubule (MT) arrays were affected, indicating a stabilizing effect of Cr(VI) on the MTs of L. culinaris. Besides, a time- and concentration-dependent gradual increase of acetylated α-tubulin, an indicator of MT stabilization, was observed in Cr(VI)-treated roots by both immunofluorescence and western blotting. Evidence is also provided that reactive oxygen species (ROS) caused by Cr(VI), determined with the specific marker dichlorofluorescein, may be responsible for MT stabilization. Combined treatments with Cr(VI) and oryzalin revealed that Cr(VI) overcomes the depolymerizing ability of oryzalin, as it does experimentally introduced hydrogen peroxide, further supporting its stabilizing effect. In conclusion, it is suggested that the mitotic aberrations caused by Cr(VI) in L. culinaris root cells may be the result of MT stabilization rather than depolymerization, which consequently disturbs MT dynamics and their related functions.


Asunto(s)
Cromo/toxicidad , Lens (Planta)/citología , Meristema/citología , Mitosis/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Acetilación , Dinitrobencenos/farmacología , Peróxido de Hidrógeno/farmacología , Lens (Planta)/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Microtúbulos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sulfanilamidas/farmacología , Tubulina (Proteína)/metabolismo
19.
Mutat Res ; 750(1-2): 111-20, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-23174415

RESUMEN

Bisphenol A (BPA), a widely used chemical in the plastics industry that displays weak oestrogenic properties, is an emerging environmental pollutant, potentially harmful to living organisms. The presumed cytotoxicity of BPA to plant cells has been poorly studied. To understand how BPA might influence plant cell division and affect the underlying cytoskeleton, the effects of BPA on the microtubule (MT) arrays of meristematic root-tip cells of Pisum sativum L. were investigated. Root tips of young seedlings were exposed to 20, 50 and 100mg/L BPA for 1, 3, 6, 12 and 24h. The effects of each treatment were determined by means of confocal laser scanning microscopy after immunolabelling of tubulin and counterstaining of DNA, and by use of light and transmission electron microscopy. It was found that BPA affected normal chromosome segregation, hampered the completion of cytokinesis and deranged interphase and mitotic MT arrays. BPA effects were dependent on the stage of each cell at the time of BPA entrance. Moreover, BPA induced the formation of macrotubules with a mean diameter of 32 ± 0.14 nm, compared with 23 ± 0.70 nm for the MT arrays in untreated cells. Finally, all MT arrays and macrotubules were depolymerised upon longer treatment. Taken together, the data suggest that BPA exerts acute anti-mitotic effects on meristematic root-tip cells of P. sativum, MT arrays constitute a primary sub-cellular target of BPA toxicity, and the manifested chromosomal abnormalities could be attributed to the disruption of the MT cytoskeleton.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Meristema/efectos de los fármacos , Fenoles/toxicidad , Pisum sativum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos
20.
Materials (Basel) ; 16(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37687539

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 µmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA