Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 44(1): 245-253, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30926949

RESUMEN

BACKGROUND AND OBJECTIVES: Excessive adipose tissue macrophage accumulation in obesity has been implicated in mediating inflammatory responses that impair glucose homeostasis and promote insulin resistance. Colony-stimulating factor 1 (CSF1) controls macrophage differentiation, and here we sought to determine the effect of a CSF1 receptor inhibitor, PLX3397, on adipose tissue macrophage levels and understand the impact on glucose homeostasis in mice. METHODS: A Ten-week-old mice were fed a chow or high-fat diet for 10 weeks and then treated with PLX3397 via oral gavage (50 mg/kg) every second day for 3 weeks, with subsequent monitoring of glucose tolerance, insulin sensitivity and assessment of adipose tissue immune cells. RESULTS: PLX3397 treatment substantially reduced macrophage numbers in adipose tissue of both chow and high-fat diet fed mice without affecting total myeloid cell levels. Despite this, PLX3397 did not greatly alter glucose homeostasis, did not affect high-fat diet-induced increases in visceral fat cytokine expression (Il-6 and Tnfa) and had limited effect on the phosphorylation of the stress kinases JNK and ERK and macrophage polarization. CONCLUSIONS: Our results indicate that macrophage infiltration of adipose tissue induced by a high-fat diet may not be the trigger for impairments in whole body glucose homeostasis, and that anti-CSF1 therapies are not likely to be useful as treatments for insulin resistance.


Asunto(s)
Tejido Adiposo , Aminopiridinas/farmacología , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Macrófagos/efectos de los fármacos , Pirroles/farmacología , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Dieta Alta en Grasa , Homeostasis/efectos de los fármacos , Ratones , Obesidad , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores
2.
Exp Physiol ; 105(8): 1268-1279, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32478429

RESUMEN

NEW FINDINGS: What is the central question of this study? Does short-term high-intensity interval training alter the composition of the microbiome and is this associated with exercise-induced improvements in cardiorespiratory fitness and insulin sensitivity? What is the main finding and its importance? Although high-intensity interval training increased insulin sensitivity and cardiovascular fitness, it did not alter the composition of the microbiome. This suggests that changes in the composition of the microbiome that occur with prolonged exercise training might be in response to changes in metabolic health rather than driving exercise training-induced adaptations. ABSTRACT: Regular exercise reduces the risk of metabolic diseases, and the composition of the gut microbiome has been associated with metabolic function. We investigated whether short-term high-intensity interval training (HIIT) altered the diversity and composition of the bacterial community and whether there were associations with markers of insulin sensitivity or aerobic fitness. Cardiorespiratory fitness ( V̇O2peak ) and body composition (dual energy X-ray absorptiometry scan) were assessed and faecal and fasted blood samples collected from 14 lean (fat mass 21 ± 2%, aged 29 ± 2 years) and 15 overweight (fat mass 33 ± 2%, aged 31 ± 2 years) men before and after 3 weeks of HIIT training (8-12 × 60 s cycle ergometer bouts at V̇O2peak power output interspersed by 75 s rest, three times per week). Gut microbiome composition was analysed by 16S rRNA gene amplicon sequencing. The HIIT significantly increased the aerobic fitness of both groups (P < 0.001) and improved markers of insulin sensitivity (lowered fasted insulin and HOMA-IR; P < 0.001) in the overweight group. Despite differences in the abundance of several bacterial taxa being evident between the lean and overweight group, HIIT did not affect the overall bacterial diversity or community structure (α-diversity or ß-diversity). No associations were found between the top 50 most abundant bacterial genera and cardiorespiratory fitness markers; however, significant associations (P < 0.05) were observed between the abundance of the bacterial species Coprococcus_3, Blautia, Lachnospiraceae_ge and Dorea and insulin sensitivity markers in the overweight group. Our results suggest that short-term HIIT does not greatly impact the overall composition of the gut microbiome, but that certain microbiome genera are associated with insulin sensitivity markers that were improved by HIIT in overweight participants.


Asunto(s)
Capacidad Cardiovascular , Microbioma Gastrointestinal , Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina , Sobrepeso/fisiopatología , Adulto , Composición Corporal , Humanos , Insulina/sangre , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA