Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 17(19): 4801-4824, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31033991

RESUMEN

Apoptosis is a highly regulated process involved in the normal organism development and homeostasis. In the context of anticancer therapy, apoptosis is also studied intensively in an attempt to induce cell death in cancer cells. Caspase activation is a known key event in the apoptotic process. In particular, active caspase-3 and -7 are the common effectors in several apoptotic pathways, therefore effector caspase activation may be a promising biomarker for response evaluation to anticancer therapy. Quantitative imaging of apoptosis in vivo could provide early assessment of therapeutic effectiveness and could also be used in drug development to evaluate the efficacy as well as potential toxicity of novel treatments. Positron Emission Tomography (PET) is a highly sensitive molecular imaging modality that allows non-invasive in vivo imaging of biological processes such as apoptosis by using radiolabeled probes. Here we describe the development and evaluation of fluorine-18-labeled caspase-3 activity-based probes (ABPs) for PET imaging of apoptosis. ABPs were selected by screening of a small library of fluorine-19-labeled DEVD peptides containing different electrophilic warhead groups. An acyloxymethyl ketone was identified with low nanomolar affinity for caspase-3 and was radiolabeled with fluorine-18. The resulting radiotracer, [18F]MICA-302, showed good labeling of active caspase-3 in vitro and favorable pharmacokinetic properties. A µPET imaging experiment in colorectal tumor xenografts demonstrated an increased tumor accumulation of [18F]MICA-302 in drug-treated versus control animals. Therefore, our data suggest this radiotracer may be useful for clinical PET imaging of response to anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Colorantes Fluorescentes/química , Imagen Óptica , Tomografía de Emisión de Positrones , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Distribución Tisular
2.
ACS Omega ; 6(2): 1328-1338, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490792

RESUMEN

The Strecker reaction is a three-component condensation of an aldehyde, an amine, and hydrogen cyanide, delivering an α-amino carbonitrile. Despite extensive investigations, the possibility to use amides instead of amines as one of the three condensation partners has been largely neglected. Nonetheless, the N-acylated α-aminocarbonitriles that are obtained in this way are of direct interest for drug discovery, because they make up a well-known class of mechanism-based inhibitors of serine- and cysteine-type hydrolases. In response, we have thoroughly explored the corresponding variant of the Strecker reaction, focusing on catalyst use, solvent, reaction time, and cyanide source. Optimized parameters were combined in a sequential one-pot protocol for which the scope was found to be compatible with library synthesis applications. Product yields ranged from 7 to 90%, and conditions were found to be mild and tolerant to a wide range of functional groups, including moieties that are typically present in druglike molecules.

3.
Eur J Med Chem ; 123: 631-638, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27517808

RESUMEN

Atg4B is a cysteine hydrolase that plays a key role in autophagy. Although it has been proposed as an attractive drug target, inhibitor discovery has proven highly challenging. The absence of a standardized, easily implementable enzyme activity/inhibition assay for Atg4B most likely contributes to this situation. Therefore, three different assay types for Atg4B activity/inhibition quantification were first compared: (1) an approach using fluorogenic Atg4B-substrates, (2) an in-gel densitometric quantification assay and (3) a thermal shift protocol. The gel-based approach showed the most promising results and was validated for screening of potential Atg4B inhibitors. A set of 8 literature inhibitors was included. Remarkably, in our hands only 2 literature references were found to have measurable Atg4B affinity. Furthermore, a fragment library (n = 182) was tested for Atg4B inhibition. One library member showed inhibition at high micromolar concentration and was found fit for further, fragment-based inhibitor design.


Asunto(s)
Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Pruebas de Enzimas , Inhibidores de Cisteína Proteinasa/metabolismo , Evaluación Preclínica de Medicamentos , Electroforesis , Humanos , Temperatura
4.
J Med Chem ; 58(23): 9238-57, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26575094

RESUMEN

Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types. Its inhibition is regarded as a promising, noncytotoxic approach in cancer therapy by blocking growth and/or metastasis of solid tumors. Earlier, we reported the modified substrate activity screening (MSAS) approach and applied it for the identification of fragments with affinity for uPA's S1 pocket. Here, these fragments are transformed into a novel class of uPA inhibitors with an imidazo[1,2-a]pyridine scaffold. The SAR for uPA inhibition around this scaffold is explored, and the best compounds in the series have nanomolar uPA affinity and selectivity with respect to the related trypsin-like serine proteases (thrombin, tPA, FXa, plasmin, plasma kallikrein, trypsin, FVIIa). Finally, the approach followed for translating fragments into small molecules with a decorated scaffold architecture is conceptually straightforward and can be expected to be broadly applicable in fragment-based drug design.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Imidazoles/química , Imidazoles/farmacología , Piridinas/química , Piridinas/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Activador de Plasminógeno de Tipo Uroquinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA