Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296659

RESUMEN

Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.


Asunto(s)
Complejos de Coordinación , Nanopartículas , Neoplasias , Humanos , Cobre/metabolismo , Medicina de Precisión , Neoplasias/tratamiento farmacológico , Complejos de Coordinación/uso terapéutico
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681725

RESUMEN

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Cobre/química , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Liposomas/química , Liposomas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas del Metal/química , Oxidación-Reducción , Superóxidos/metabolismo
3.
J Mater Chem B ; 10(38): 7797-7807, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36069317

RESUMEN

The prepared heparin-coated iron oxide nanoparticles (Hep-IONPs) contrasted cholangioma tumors in the liver in T2 MRI. The NPs were not toxic to rats and rabbits after 14 days of consecutive IV injections as observed from the monitoring of the body weight and biochemical and hematological parameters. No embryotoxic or immunotoxic side effects of the material were detected. However, we observed mutagenicity of iron oxide NPs in the Ames test and micronucleus assay. The pharmacokinetic studies showed that Hep-IONPs circulated in the blood for 14 days after IV injection. The liver iron level reached its maximum after 6 hours and slowly decreased within 30 days. Altogether, these results suggest that the synthesized Hep-IONPs are promising for use as the MRI contrast agent to identify liver malignancies.


Asunto(s)
Medios de Contraste , Heparina , Animales , Medios de Contraste/toxicidad , Heparina/toxicidad , Hierro/toxicidad , Hígado/patología , Nanopartículas Magnéticas de Óxido de Hierro , Conejos , Ratas
4.
Biomedicines ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34829821

RESUMEN

Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA