RESUMEN
The B-cell response in atherosclerosis is directed toward oxidation-specific epitopes such as phosphorylcholine (PC) that arise during disease-driven oxidation of self-antigens. PC-bearing antigens have been used to induce atheroprotective antibodies against modified low-density lipoproteins (oxLDL), leading to plaque reduction. Previous studies have found that B-cell transfer from aged atherosclerotic mice confers protection to young mice, but the mechanism is unknown. Here, we dissected the atheroprotective response in the spleen and found an ongoing germinal center reaction, accumulation of antibody-forming cells, and inflammasome activation in apolipoprotein E-deficient mice (Apoe(-/-)). Specific B-cell clone expansion involved the heavy chain variable region (Vh) 5 and Vh7 B-cell receptor families that harbor anti-PC reactivity. oxLDL also accumulated in the spleen. To investigate whether protection could be induced by self-antigens alone, we injected apoptotic cells that carry the same oxidation-specific epitopes as oxLDL. This treatment reduced serum cholesterol and inhibited the development of atherosclerosis in a B-cell-dependent manner. Thus, we conclude that the spleen harbors a protective B-cell response that is initiated in atherosclerosis through sterile inflammation. These data highlight the importance of the spleen in atherosclerosis-associated immunity.
Asunto(s)
Aterosclerosis/inmunología , Linfocitos B/inmunología , Epítopos/inmunología , Inflamación/inmunología , Bazo/inmunología , Bazo/patología , Envejecimiento/patología , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Apoptosis , Aterosclerosis/patología , Colesterol/metabolismo , Células Clonales , Centro Germinal/inmunología , Inflamasomas/metabolismo , Lipoproteínas LDL/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Oxidación-Reducción , Fosfatidilcolinas/metabolismoRESUMEN
OBJECTIVE: Obesity promotes a chronic inflammatory condition in adipose tissue (AT). Impairment of insulin sensitivity coincides with infiltration of T cells into AT in early stages of obesity, when macrophages are not yet present. Here, we examine the role of invariant natural killer T (iNKT) cells, a subtype of T cells activated by lipid antigens, on glucose and lipid metabolism in obesity. APPROACH AND RESULTS: Jα18(-/-) mice, specifically lacking iNKT cells, and wild-type mice consumed a chow or high-fat diet for 10 weeks. One third of all T lymphocytes in the liver of wild-type mice were iNKT cells, whereas few were detected in AT. Diet-induced obesity increased blood glucose in both genotypes of mice, whereas glucose tolerance test revealed similar kinetics of glucose clearance in Jα18(-/-) and wild-type mice. Under obese conditions, expression of inflammatory cytokines in AT did not differ between the groups, although the number of T cells and macrophages was lower in Jα18(-/-) mice. Nonetheless, AT homeostasis in Jα18(-/-) mice was altered evidenced by lower AT weight, smaller adipocytes, accelerated lipogenesis, increased expression of hormone-sensitive lipase, and accelerated basal lipolysis. CONCLUSIONS: iNKT cells do not affect glucose clearance but rather modulate lipid metabolism in both liver and AT. Only few iNKT cells are found in AT under lean and obese conditions, suggesting that their effects on lipid metabolism are mainly mediated in the liver, their primary host organ.
Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Células T Asesinas Naturales/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/inmunología , Animales , Antígenos CD1d/inmunología , Antígenos CD1d/metabolismo , Glucemia/análisis , Modelos Animales de Enfermedad , Hígado Graso/inmunología , Hígado Graso/fisiopatología , Resistencia a la Insulina , Metabolismo de los Lípidos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Células T Asesinas Naturales/inmunología , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Esterol Esterasa/inmunologíaRESUMEN
Discovery of novel biomarkers for atherosclerosis is important to aid in early diagnosis of pre-symptomatic patients at high risk of cardiovascular events. The aim of the present study was therefore to identify potential biomarkers in circulating cells reflecting atherosclerotic lesion progression in the vessel wall. We performed gene arrays on circulating leucocytes from atherosclerosis prone Apoe(-/-) mice with increasing ages, using C57BL/6 mice as healthy controls. We identified fatty acid binding protein 4 (FABP4) mRNA to be augmented in mice with established disease compared with young Apoe(-/-) or controls. Interestingly, the transcript FABP4 correlated significantly with lesion size, further supporting a disease associated increase. In addition, validation of our finding on protein level showed augmented FABP4 in circulating leucocytes whereas, importantly, no change could be observed in plasma. Immunofluorescence analysis demonstrated FABP4 to be present mainly in circulating neutrophils and to some extent in monocytes. Moreover, FABP4-positive neutrophils and macrophages could be identified in the subintimal space in the plaque. Using human circulating leucocytes, we confirmed the presence of FABP4 protein in neutrophils and monocytes. In conclusion, we have showed that cellular levels of FABP4 in circulating leucocytes associate with lesion development in the experimental Apoe(-/-) model. The increased expression is primarily localized to neutrophils, but also in monocytes. We have identified FABP4 in leucocytes as a potential and easy accessible biomarker of atherosclerosis which could be of future clinical relevance.
Asunto(s)
Apolipoproteínas E/fisiología , Aterosclerosis/patología , Biomarcadores/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Leucocitos/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Western Blotting , Progresión de la Enfermedad , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Leucocitos/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Monocitos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Classic risk factors, including age, smoking, serum cholesterol, diabetes and blood pressure, constitute the basis of present risk prediction models but fail to identify all individuals at risk. The objective of this study was to investigate if genomic and transcriptional patterns improve prediction of ischemic events in patients with established carotid artery disease. Genotype and gene expression profiles were obtained from carotid plaque tissue (n = 126) and peripheral blood mononuclear cells (n = 97) of patients undergoing carotid endarterectomy. Patients were followed for an average of 44 months, and 25 ischemic events occurred (18 ischemic strokes and 7 myocardial infarctions). Blinded leave-one-out cross-validation on Cox regression coefficients was used to assign gene expression-based risk scores to each patient. When compared with classic risk factors, addition of carotid plaque gene expression-based risk score improved the prediction of future ischemic events from an area under the curve (AUC) of 0.66 to an AUC of 0.79. The inclusion of gene expression risk score from peripheral blood mononuclear cells or from 25 established myocardial infarction risk single nucleotide polymorphisms only exhibited marginal effects on the prediction of ischemic events. Prediction of ischemic events is improved by inclusion of gene expression profiling from carotid endarterectomy tissue compared with prediction on the basis of classic risk markers alone in patients with atherosclerosis. The method may be developed to identify subjects at very high risk of ischemic events.
Asunto(s)
Perfilación de la Expresión Génica , Isquemia/diagnóstico , Isquemia/genética , Transcriptoma , Anciano , Anciano de 80 o más Años , Endarterectomía Carotidea/efectos adversos , Femenino , Humanos , Isquemia/etiología , Isquemia/mortalidad , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Pronóstico , Curva ROC , Factores de RiesgoRESUMEN
AIMS: Atherosclerosis is a chronic inflammatory disease involving immunological and metabolic processes. Metabolism of tryptophan (Trp) via the kynurenine pathway has shown immunomodulatory properties and the ability to modulate atherosclerosis. We identified 3-hydroxyanthranilic acid (3-HAA) as a key metabolite of Trp modulating vascular inflammation and lipid metabolism. The molecular mechanisms driven by 3-HAA in atherosclerosis have not been completely elucidated. In this study, we investigated whether two major signalling pathways, activation of SREBPs and inflammasome, are associated with the 3-HAA-dependent regulation of lipoprotein synthesis and inflammation in the atherogenesis process. Moreover, we examined whether inhibition of endogenous 3-HAA degradation affects hyperlipidaemia and plaque formation. METHODS AND RESULTS: In vitro, we showed that 3-HAA reduces SREBP-2 expression and nuclear translocation and apolipoprotein B secretion in HepG2 cell cultures, and inhibits inflammasome activation and IL-1ß production by macrophages. Using Ldlr-/- mice, we showed that inhibition of 3-HAA 3,4-dioxygenase (HAAO), which increases the endogenous levels of 3-HAA, decreases plasma lipids and atherosclerosis. Notably, HAAO inhibition led to decreased hepatic SREBP-2 mRNA levels and lipid accumulation, and improved liver pathology scores. CONCLUSIONS: We show that the activity of SREBP-2 and the inflammasome can be regulated by 3-HAA metabolism. Moreover, our study highlights that targeting HAAO is a promising strategy to prevent and treat hypercholesterolaemia and atherosclerosis.
Asunto(s)
Ácido 3-Hidroxiantranílico/metabolismo , Aterosclerosis/metabolismo , Inflamasomas/metabolismo , Lipoproteínas/sangre , Hígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/deficiencia , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenasa/antagonistas & inhibidores , 3-Hidroxiantranilato 3,4-Dioxigenasa/metabolismo , Ácido 3-Hidroxiantranílico/análogos & derivados , Ácido 3-Hidroxiantranílico/farmacología , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica , Receptores de LDL/genética , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genéticaRESUMEN
BACKGROUND: Gene expression microarrays and real-time PCR are common methods used to measure mRNA levels. Each method has a fundamentally different approach of normalization between samples. Relative quantification of gene expression using real-time PCR is often done using the 2(/\)(-DeltaDeltaCt) method, in which the normalization is performed using one or more endogenous control genes. The choice of endogenous control gene is often arbitrary or bound by tradition. We here present an analysis of the differences in expression results obtained with microarray and real-time PCR, dependent on different choices of endogenous control genes. RESULTS: In complex tissue, microarray data and real-time PCR data show the best correlation when endogenous control genes are omitted and the normalization is done relative to total RNA mass, as measured before reverse transcription. CONCLUSION: We have found that for real-time PCR in heterogeneous tissue samples, it may be a better choice to normalize real-time PCR Ct values to the carefully measured mass of total RNA than to use endogenous control genes. We base this conclusion on the fact that total RNA mass normalization of real-time PCR data shows better correlation to microarray data. Because microarray data use a different normalization approach based on a larger part of the transcriptome, we conclude that omitting endogenous control genes will give measurements more in accordance with actual concentrations.
Asunto(s)
Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Anciano , Vasos Sanguíneos/patología , Estenosis Carotídea/genética , Estenosis Carotídea/patología , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Leucocitos/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Polimerasa Taq/metabolismo , Factores de TiempoRESUMEN
Heparan sulfate in the extracellular matrix of the artery wall has been proposed to possess anti-atherogenic properties by interfering with lipoprotein retention, suppression of inflammation, and inhibition of smooth muscle cell growth. Previously, the amount of heparan sulfate in atherosclerotic lesions from humans and animals has been shown to be reduced but the identity or identities of the heparan sulfate molecules being down regulated in this disease are not known. In this study, atherosclerotic lesions were retrieved from 44 patients undergoing surgery for symptomatic carotid stenosis. Normal iliac arteries from organ donors were used as controls. Analysis of the specimens by gene microarray showed a selective reduction in perlecan gene expression, whereas, expression of the other heparan sulfate proteoglycans in the artery wall, agrin and collagen XVIII, remained unchanged. Expression of the large chondroitin sulfate proteoglycan, versican, also remained unchanged. Real-time PCR confirmed the decrease in perlecan gene expression and the unchanged expression of versican. The findings were supported by immunohistochemical analysis demonstrating a reduced accumulation of both perlecan core protein and heparan sulfate in carotid lesions. The study demonstrates a reduction of perlecan mRNA-expression and protein deposition in human atherosclerosis, which in part explains the low levels of heparan sulfate in this disease.
Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Regulación de la Expresión Génica , Proteoglicanos de Heparán Sulfato/genética , Anciano , Anciano de 80 o más Años , Estenosis Carotídea/genética , Estenosis Carotídea/patología , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , ARN/genética , ARN/aislamiento & purificaciónRESUMEN
AIMS: Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of low-density lipoprotein in the artery, leading to maladaptive response of cells from the immune system and vessel wall. Strong evidence implicates indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of the kynurenine pathway of tryptophan (Trp) degradation, with immune regulation and anti-inflammatory mechanisms in different diseases. However, the role of IDO and the endogenous degradation of Trp have never been directly examined in atherosclerosis development. We used the IDO inhibitor 1-methyl-Trp (1-MT) to determine the role of IDO-mediated Trp metabolism in vascular inflammation and atherosclerosis. METHODS AND RESULTS: Apoe(-/-) mice were treated with 1-MT in drinking water for 8 weeks. Systemic IDO inhibition led to a significant increase in atherosclerotic lesions that were â¼58 and 54% larger in the aortic arch and root, respectively. 1-MT treatment enhanced vascular inflammation, up-regulated VCAM-1 and CCL2, and increased CD68 macrophage accumulation into the plaque. Notably, the rise in VCAM-1 expression was not limited to the plaque but also found in smooth muscle cells (SMCs) of the tunica media. Furthermore, we found that IDO-dependent Trp metabolism by SMCs regulates VCAM-1 expression, and that 1-MT-induced acceleration of atherosclerosis and vascular inflammation can be reversed by exogenous administration of the Trp metabolite 3-hydroxyanthranilic acid (3-HAA). CONCLUSION: IDO-mediated Trp metabolism regulates vascular inflammation and plaque formation in hypercholesterolaemic Apoe(-/-) mice. Our data establish that this pathway plays a major role in the pathological process of atherogenesis.
Asunto(s)
Aterosclerosis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Triptófano/análogos & derivados , Animales , Apolipoproteínas E/genética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Noqueados , Triptófano/farmacología , Túnica Media/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
OBJECTIVES: The aim of this study was to investigate gene expression networks related to cardiovascular disease in radiated human arteries. BACKGROUND: Recent epidemiological studies have shown that radiotherapy is associated with cardiovascular disease years after treatment. However, the molecular mechanisms underlying late effects of radiation are poorly described. METHODS: Arterial biopsies from radiated and nonradiated human conduit arteries, from the same patient, were simultaneously harvested during microvascular free tissue transfer for cancer-reconstruction in 13 patients, 4 to 500 weeks from radiation treatment. Radiated and nonradiated arteries were compared, with Affymetrix (Santa Clara, California) microarrays on a subset of the material to generate candidate genes. A Taqman (Applied Biosystems, Foster City, California) low-density array of 45 selected genes was designed for analysis of the whole material. RESULTS: Thirteen genes were synchronously expressed in all patients (p = 0.0015), including CCL8, CCL3, CXCL2, DUSP5, FGFR2, HMOX1, HOXA9, IL-6, MMP-1, PTX3, RDH10, SOD2, and TNFAIP3. A majority of differentially regulated genes related to the nuclear factor-kappa B (NF-kappaB) signaling pathway and were dysregulated even years after radiation. The NF-kappaB activation was confirmed by immunohistochemistry and immunofluorescence. CONCLUSIONS: In the present study, we found sustained inflammation due to NF-kappaB activation in human radiated arteries. The results are supported by previous in vitro findings suggesting that deoxyribonucleic acid injury, after radiation, activates NF-kappaB. We also suggest that HOXA9 might be involved in the regulation of NF-kappaB activation. The observed sustained inflammatory response can explain cardiovascular disease years after radiation.
Asunto(s)
Arterias/efectos de la radiación , Enfermedades Cardiovasculares/etiología , Expresión Génica , Inflamación , FN-kappa B/genética , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos por RadiaciónRESUMEN
Thromboxane A(2) (TXA(2)) is a potent prothrombotic and immune modulating lipid mediator, which is implicated in cardiovascular diseases, in particular, atherosclerotic lesion development and thrombogenicity. Here, we tested the hypothesis that thromboxane synthase (TXAS), the obligate enzyme required to synthesize TXA(2), is expressed within the human atherosclerotic lesion, thus potentially contributing to TXA(2) synthesis and disease development. In an animal study, different atherosclerosis-prone mouse strains were investigated and compared with control mice. In a patient study (n = 134), endarterectomies of carotid atherosclerotic lesions were compared with non-atherosclerotic arteries (n = 11). Expression of TXAS was evaluated by real-time quantitative reverse transcription PCR and immunohistochemistry. TXAS mRNA expression was increased within the vascular wall in mouse models of atherosclerosis with advanced lesions. In humans, TXAS was expressed in the atherosclerotic lesion, associated with increased inflammatory cells, in particular M2 polarized macrophages, and increased in atherosclerotic lesions of patients with recent symptoms of thrombotic events. Production of TXA(2) by plaque tissue, verified by gas chromatography-mass spectrometry, increased after addition of arachidonic acid or lipopolysaccharide, and was inhibited by the TXAS inhibitor furegrelate. The findings suggest that intraplaque TXA(2) generation may contribute to the development of atherosclerosis and its thrombotic complications in humans.
Asunto(s)
Aterosclerosis/enzimología , Aterosclerosis/patología , Tromboxano A2/metabolismo , Tromboxano-A Sintasa/genética , Animales , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Tromboxano-A Sintasa/metabolismoRESUMEN
BACKGROUND: Population-based genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with cardiovascular disease or its risk factors. Genes in close proximity to these risk-SNPs are often thought to be pathogenetically important based on their location alone. However, the actual connections between SNPs and disease mechanisms remain largely unknown. METHODS AND RESULTS: To identify novel susceptibility genes, we investigated how 166 SNPs previously found to be associated with increased cardiovascular risk and/or predisposing metabolic traits relate to the expression of nearby genes. Gene expression in 577 samples of aorta, liver, mammary artery, and carotid atherosclerotic plaque was measured using expression arrays. For 47 SNPs, the expression levels of proximal genes (located within 200 kb) were affected (P<0.005). More than 20 of these genes had not previously been identified as candidate genes for cardiovascular or related metabolic traits. SNP-associated gene effects were tissue-specific and the tissue specificity was phenotype-dependent. CONCLUSIONS: This study demonstrates several instances of association between risk-SNPs and genes immediately adjacent to them. It also demonstrates instances in which the associated gene is not the immediately proximal and obvious candidate gene for disease. This shows the necessity of careful studies of genetic marker data as a first step toward application of genome-wide association studies findings in a clinical setting.
Asunto(s)
Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Anciano , Femenino , Genes , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/fisiología , RiesgoRESUMEN
Leukotrienes (LT) are a group of proinflammatory lipid mediators that are implicated in the pathogenesis and progression of atherosclerosis. Here we report that mRNA levels for the three key proteins in LTB4 biosynthesis, namely 5-lipoxygenase (5-LO), 5-LO-activating protein (FLAP), and LTA4 hydrolase (LTA4H), are significantly increased in human atherosclerotic plaque (n = 72) as compared with healthy controls (n = 6). Neither LTC4 synthase nor any of the LT receptors exhibits significantly increased mRNA levels. Immunohistochemical staining revealed abundant expression of 5-LO, FLAP, and LTA4H protein, colocalizing in macrophages of intimal lesions. Human lesion tissue converts arachidonic acid into significant amounts of LTB4, and a selective, tight-binding LTA4H inhibitor can block this activity. Furthermore, expression of 5-LO and LTA4H, but not FLAP, is increased in patients with recent or ongoing symptoms of plaque instability, and medication with warfarin correlates with increased levels of FLAP mRNA. In contrast to human plaques, levels of 5-LO mRNA are not significantly increased in plaque tissues from two atherosclerosis-prone mouse strains, and mouse plaques exhibit segregated cellular expression of LTA4H and 5-LO as well as strong increases of CysLT1 and CysLT2 mRNA. These discrepancies indicate that phenotypic changes in the synthesis and action of LT in specific mouse models of atherosclerosis should be cautiously translated into human pathology. The abundant expression of LTA4H and correlation with plaque instability identify LTA4H as a potential target for pharmacological intervention in treatment of human atherosclerosis.