Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(3): e0186522, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36847528

RESUMEN

Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable ß5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
2.
Inorg Chem ; 63(19): 8556-8566, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38684718

RESUMEN

One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.


Asunto(s)
Nanopartículas del Metal , Triptófano , Cerio/química , Nanopartículas del Metal/química , Modelos Moleculares , Oxidación-Reducción , Óxidos/química , Titanio/química , Triptófano/química , Triptófano/metabolismo
3.
J Virol ; 95(16): e0083621, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34076483

RESUMEN

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


Asunto(s)
Virus Chikungunya/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Sitios de Unión , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Interacciones Huésped-Patógeno , Ratones , Mutación , Células 3T3 NIH , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
4.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055253

RESUMEN

Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.


Asunto(s)
Virus Chikungunya/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/química , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitio Alostérico , Animales , Sitios de Unión , Línea Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/química , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas Musculares/genética , Mutación , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
5.
Molecules ; 25(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321815

RESUMEN

In recent years, intrinsically disordered proteins (IDPs) and disordered domains have attracted great attention. Many of them contain linear motifs that mediate interactions with other factors during formation of multicomponent protein complexes. NMR spectrometry is a valuable tool for characterizing this type of interactions on both amino acid (aa) and atomic levels. Alphaviruses encode a nonstructural protein nsP3, which drives viral replication complex assembly. nsP3 proteins contain over 200-aa-long hypervariable domains (HVDs), which exhibits no homology between different alphavirus species, are predicted to be intrinsically disordered and appear to be critical for alphavirus adaptation to different cells. Previously, we have shown that nsP3 HVD of chikungunya virus (CHIKV) is completely disordered with low tendency to form secondary structures in free form. In this new study, we used novel NMR approaches to assign the spectra for the nsP3 HVD of Venezuelan equine encephalitis virus (VEEV). The HVDs of CHIKV and VEEV have no homology but are both involved in replication complex assembly and function. We have found that VEEV nsP3 HVD is also mostly disordered but contains a short stable α-helix in its C-terminal fragment, which mediates interaction with the members of cellular Fragile X syndrome protein family. Our NMR data also suggest that VEEV HVD has several regions with tendency to form secondary structures.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/enzimología , Espectroscopía de Resonancia Magnética , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Animales , Fraccionamiento Químico , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Solubilidad , Relación Estructura-Actividad , Proteínas no Estructurales Virales/aislamiento & purificación
6.
Angew Chem Int Ed Engl ; 59(26): 10297-10300, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-31490596

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy serves as an indispensable tool in chemistry and biology but often suffers from long experimental times. We present a proof-of-concept of the application of deep learning and neural networks for high-quality, reliable, and very fast NMR spectra reconstruction from limited experimental data. We show that the neural network training can be achieved using solely synthetic NMR signals, which lifts the prohibiting demand for a large volume of realistic training data usually required for a deep learning approach.

7.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29899097

RESUMEN

Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.


Asunto(s)
Virus Chikungunya/fisiología , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Sitios de Unión , Línea Celular , Virus Chikungunya/química , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Culicidae , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Dominios Proteicos , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral
8.
Org Biomol Chem ; 17(24): 5886-5890, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31147659

RESUMEN

What computational methods should be used to achieve the most reliable result in computational structure elucidation? A study on the effect of quality and quantity of geometries on computational NMR structure elucidation performance is reported. Semi-empirical, HF and DFT methods were explored, and B3LYP optimized geometries in combination with mPW1PW91 shifts and M06-2X conformer energies was found to be best. The required number of conformers considered has also been investigated, as well as several methods for the reduction of this number. Clear guidelines for the best computational NMR structure elucidation methods for different levels of available computing power are provided.

9.
Protein Expr Purif ; 140: 16-27, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28751017

RESUMEN

A novel approach for separate expression of dengue virus NS3 protease and its NS2B cofactor domain is described in this paper. The two proteins are expressed in E.coli and purified separately and subsequently efficiently co-refolded to form a stable complex. This straightforward and robust method allows for separate isotope labeling of the two proteins, facilitating analysis by nuclear magnetic resonance (NMR) spectroscopy. Unlinked NS2B-NS3pro behaves better in NMR spectroscopy than linked NS2B-NS3pro, which has resulted in the backbone resonance assignment of the unlinked NS2B-NS3 complex bound to a peptidic boronic acid inhibitor.


Asunto(s)
Virus del Dengue/química , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química , Dengue/genética , Dengue/virología , Virus del Dengue/genética , Espectroscopía de Resonancia Magnética , Dominios Proteicos , Pliegue de Proteína , Serina Endopeptidasas/genética , Proteínas no Estructurales Virales/genética
10.
Org Biomol Chem ; 14(16): 3943-9, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27045792

RESUMEN

The DP4 parameter, which provides a confidence level for NMR assignment, has been widely used to help assign the structures of many stereochemically-rich molecules. We present an improved version of the procedure, which can be downloaded as Python script instead of running within a web-browser, and which analyses output from open-source molecular modelling programs (TINKER and NWChem) in addition to being able to use output from commercial packages (Schrodinger's Macromodel and Jaguar; Gaussian). The new open-source workflow incorporates a method for the automatic generation of diastereomers using InChI strings and has been tested on a range of new structures. This improved workflow permits the rapid and convenient computational elucidation of structure and relative stereochemistry.


Asunto(s)
Automatización , Composición de Medicamentos , Espectroscopía de Resonancia Magnética/métodos , Programas Informáticos
11.
ACS ES T Water ; 4(2): 751-760, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38356929

RESUMEN

Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC). The biocatalysts demonstrated high oxidation rates for the selected pollutants. In particular HRP immobilized fly ash and perlite degraded DFC and PC completely during 3 days of interaction and also showed high degradation rates for CBZ. Immobilized laccase was successful in PC degradation, where up to 70-80% degradation of the compounds with aromatic rings was reported by NMR measurements for a high drug concentration of 10 µg/mL. The immobilization method played a significant role in this process by providing stability and protection for the enzymes over 3 weeks. Furthermore, the enzymes acted differently in the three chosen supports due to their complex chemical composition, which could have an effect on the overall enzyme activity.

12.
J Magn Reson ; 346: 107342, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459916

RESUMEN

A new deep neural network based on the WaveNet architecture (WNN) is presented, which is designed to grasp specific patterns in the NMR spectra. When trained at a fixed non-uniform sampling (NUS) schedule, the WNN benefits from pattern recognition of the corresponding point spread function (PSF) pattern produced by each spectral peak resulting in the highest quality and robust reconstruction of the NUS spectra as demonstrated in simulations and exemplified in this work on 2D 1H-15N correlation spectra of three representative globular proteins with different sizes: Ubiquitin (8.6 kDa), Azurin (14 kDa), and Malt1 (44 kDa). The pattern recognition by WNN is also demonstrated for successful virtual homo-decoupling in a 2D methyl 1H-13C - HMQC spectrum of MALT1. We demonstrate using WNN that prior knowledge about the NUS schedule, which so far was not been fully exploited, can be used for designing new powerful NMR processing techniques that surpass the existing algorithmic methods.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Espectroscopía de Resonancia Magnética/métodos , Ubiquitina , Resonancia Magnética Nuclear Biomolecular/métodos
13.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7578-7592, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35120010

RESUMEN

The nonuniform sampling (NUS) is a powerful approach to enable fast acquisition but requires sophisticated reconstruction algorithms. Faithful reconstruction from partially sampled exponentials is highly expected in general signal processing and many applications. Deep learning (DL) has shown astonishing potential in this field, but many existing problems, such as lack of robustness and explainability, greatly limit its applications. In this work, by combining the merits of the sparse model-based optimization method and data-driven DL, we propose a DL architecture for spectra reconstruction from undersampled data, called MoDern. It follows the iterative reconstruction in solving a sparse model to build the neural network, and we elaborately design a learnable soft-thresholding to adaptively eliminate the spectrum artifacts introduced by undersampling. Extensive results on both synthetic and biological data show that MoDern enables more robust, high-fidelity, and ultrafast reconstruction than the state-of-the-art methods. Remarkably, MoDern has a small number of network parameters and is trained on solely synthetic data while generalizing well to biological data in various scenarios. Furthermore, we extend it to an open-access and easy-to-use cloud computing platform (XCloud-MoDern), contributing a promising strategy for further development of biological applications.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Análisis Espectral , Procesamiento de Señales Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos
14.
Chem Commun (Camb) ; 59(36): 5475-5478, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37070867

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy has become a formidable tool for biochemistry and medicine. Although J-coupling carries essential structural information it may also limit the spectral resolution. Homonuclear decoupling remains a challenging problem. In this work, we introduce a new approach that uses a specific coupling value as prior knowledge, and the Hankel property of the exponential NMR signal to achieve broadband heteronuclear decoupling using the low-rank method. Our results on synthetic and realistic HMQC spectra demonstrate that the proposed method not only effectively enhances resolution by decoupling, but also maintains sensitivity and suppresses spectral artefacts. The approach can be combined with non-uniform sampling, which means that the resolution can be further improved without any extra acquisition time.

15.
Commun Biol ; 6(1): 1193, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001280

RESUMEN

The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.


Asunto(s)
Dengue , Péptido Hidrolasas , Humanos , Serina Endopeptidasas/química , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas no Estructurales Virales/química
16.
J Biomol NMR ; 53(2): 85-92, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22528292

RESUMEN

Using the case of the catalytic domain of MMP-12 in complex with the known inhibitor CGS27023A, a recently assembled 3D (15)N-edited/(14)N,(12)C-filtered ROESY experiment is used to monitor and distinguish protein amide protons in fast exchange with bulk water from amide protons close to water molecules with longer residence times, the latter possibly reflecting water molecules of structural or functional importance. The (15)N-edited/(14)N,(12)C-filtered ROESY spectra were compared to the original (15)N-edited/(14)N,(12)C-filtered NOESY and the conventional amide-water exchange experiment, CLEANEX. Three protein backbone amide protons experiencing direct dipolar cross relaxation with water in the (15)N-edited/(14)N,(12)C-filtered ROESY spectrum were assigned. In an ensemble of six crystal structures, two conserved water molecules within 3 Å of the three amide protons were identified. These two water molecules are buried into cavities in the protein surface and thus sufficiently slowed down by the protein topology to account for the observed dipolar interaction. Structural analysis of an ensemble of six crystal structures ruled out any exchange-relayed contributions for the amide-water interactions of interest.


Asunto(s)
Ácidos Hidroxámicos/química , Metaloproteinasa 12 de la Matriz/química , Resonancia Magnética Nuclear Biomolecular/métodos , Inhibidores de Proteasas/química , Pirazinas/química , Agua/química , Humanos , Ácidos Hidroxámicos/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Isótopos de Nitrógeno , Inhibidores de Proteasas/metabolismo , Conformación Proteica , Pirazinas/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Agua/metabolismo
17.
Bioorg Med Chem Lett ; 22(9): 3265-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22472694

RESUMEN

4'-Azido-2'-deoxy-2'-methylcytidine (14) is a potent nucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase, displaying an EC(50) value of 1.2 µM and showing moderate in vivo bioavailability in rat (F=14%). Here we describe the synthesis and biological evaluation of 4'-azido-2'-deoxy-2'-methylcytidine and prodrug derivatives thereof.


Asunto(s)
Antivirales/química , Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Hepacivirus/efectos de los fármacos , Profármacos/farmacología , Animales , Antivirales/farmacología , Citidina/farmacología , Desoxicitidina/farmacología , Descubrimiento de Drogas , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Ratas , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
18.
Bioorg Med Chem ; 20(14): 4377-89, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22698785

RESUMEN

A series of P1-P3 linked macrocyclic BACE-1 inhibitors containing a hydroxyethylamine (HEA) isostere scaffold has been synthesized. All inhibitors comprise a toluene or N-phenylmethanesulfonamide P2 moiety. Excellent BACE-1 potencies, both in enzymatic and cell-based assays, were observed in this series of target compounds, with the best candidates displaying cell-based IC(50) values in the low nanomolar range. As an attempt to improve potency, a phenyl substituent aiming at the S3 subpocket was introduced in the macrocyclic ring. X-ray analyzes were performed on selected compounds, and enzyme-inhibitor interactions are discussed.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Etilaminas/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Etilaminas/síntesis química , Estructura Terciaria de Proteína , Relación Estructura-Actividad
19.
Nanoscale Adv ; 4(6): 1527-1532, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134379

RESUMEN

The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new potential sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In this study we investigated the interaction of this protein with two types of titania nanoparticles by NMR and discovered that while lactate capped particles essentially did not interact with the protein chain, the aminoalcohol-capped ones showed strong complexation with a distinct part of an ordered α-helix fragment. The structure of the forming complex was elucidated based on NMR data and theoretical calculation. To the best of our knowledge, this is the first time that a tailored titanium oxide nanoparticle was shown to interact specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein, possibly interfering with its functionality.

20.
Biomol NMR Assign ; 16(1): 135-145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149939

RESUMEN

The serotype II Dengue (DENV 2) virus is the most prevalent of all four known serotypes. Herein, we present nearly complete 1H, 15N, and 13C backbone and 1H, 13C isoleucine, valine, and leucine methyl resonance assignment of the apo S135A catalytically inactive variant of the DENV 2 protease enzyme folded as a tandem formed between the serine protease domain NS3pro and the cofactor NS2B, as well as the secondary structure prediction of this complex based on the assigned chemical shifts using the TALOS-N software. Our results provide a solid ground for future elucidation of the structure and dynamic of the apo NS3pro/NS2B complex, key for adequate development of inhibitors, and a thorough molecular understanding of their function(s).


Asunto(s)
Virus del Dengue , Dengue , Virus del Dengue/química , Virus del Dengue/metabolismo , Humanos , Proteínas Mutantes , Resonancia Magnética Nuclear Biomolecular , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA