Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178161

RESUMEN

BACKGROUND: Long-lasting insecticidal nets (LLINs) may have different impacts on distinct mosquito vector species. We assessed the efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs on the density of Anopheles gambiae s.s. and An. coluzzii compared to pyrethroid-only nets in a three-arm cluster randomised control trial in Benin. METHODS: Indoor and outdoor collections of adult mosquitoes took place in 60 clusters using human landing catches at baseline and every 3 months for 2 years. After morphological identification, around 15% of randomly selected samples of An. gambiae s.l. were dissected to determine parity, species (using PCR). RESULTS: Overall, a total of 46,613 mosquito specimens were collected at baseline and 259,250 in the eight quarterly collections post-net distribution. Post-net distribution, approximately 70% of the specimens of An. gambiae s.l. speciated were An. coluzzii, while the rest were mostly composed of An. gambiae s.s. with a small proportion (< 1%) of hybrids (An. gambiae/coluzzii). There was no evidence of a significant reduction in vector density indoors in either primary vector species [An. coluzzii: DR (density ratio) = 0.62 (95% CI 0.21-1.77), p = 0.3683 for the pyrethroid-pyriproxyfen LLIN and DR = 0.56 (95% CI 0.19-1.62), p = 0.2866 for the pyrethroid-chlorfenapyr LLIN, An. gambiae s.s.: DR = 0.52 (95% CI 0.18-1.46), p = 0.2192 for the pyrethroid-pyriproxyfen LLIN and DR = 0.53 (95% CI 0.19-1.46), p = 0.2222 for the pyrethroid-chlorfenapyr]. The same trend was observed outdoors. Parity rates of An. gambiae s.l. were also similar across study arms. CONCLUSIONS: Compared with pyrethroid-only LLINs, pyrethroid-chlorfenapyr LLINs and pyrethroid-pyriproxyfen LLINs performed similarly against the two primary mosquito species An. gambiae s.s. and An. coluzzii in Benin.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Humanos , Benin , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Piretrinas/farmacología
2.
Open Res Eur ; 2: 67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645305

RESUMEN

Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA