RESUMEN
In most eukaryotes, the meiotic chromosomal bouquet (comprising clustered chromosome ends) provides an ordered chromosome arrangement that facilitates pairing and recombination between homologous chromosomes. In the protist Tetrahymena thermophila, the meiotic prophase nucleus stretches enormously, and chromosomes assume a bouquet-like arrangement in which telomeres and centromeres are attached to opposite poles of the nucleus. We have identified and characterized three meiosis-specific genes [meiotic nuclear elongation 1-3 (MELG1-3)] that control nuclear elongation, and centromere and telomere clustering. The Melg proteins interact with cytoskeletal and telomere-associated proteins, and probably repurpose them for reorganizing the meiotic prophase nucleus. A lack of sequence similarity between the Tetrahymena proteins responsible for telomere clustering and bouquet proteins of other organisms suggests that the Tetrahymena bouquet is analogous, rather than homologous, to the conserved eukaryotic bouquet. We also report that centromere clustering is more important than telomere clustering for homologous pairing. Therefore, we speculate that centromere clustering may have been the primordial mechanism for chromosome pairing in early eukaryotes.
Asunto(s)
Meiosis , Tetrahymena , Centrómero/genética , Emparejamiento Cromosómico/genética , Cromosomas/genética , Meiosis/genética , Telómero/genética , Tetrahymena/genéticaRESUMEN
OBJECTIVES: Poor survival of high-grade serous pelvic cancer is caused by a lack of effective screening measures. The detection of exfoliated cells from high-grade serous pelvic cancer, or precursor lesions, is a promising concept for earlier diagnosis. However, collecting those cells in the most efficient way while fulfilling all requirements for a screening approach is a challenge. We introduce a new catheter for uterine and tubal lavage (UtL) and the clinical evaluation of its performance. METHODS/MATERIALS: In study I, the clinical feasibility of the UtL using the new catheter was examined in 93 patients admitted for gynecologic surgery under general anesthesia. In study II, the safety of the UtL procedure was assessed. The pain during and after the UtL performed under local anesthesia was rated on a visual analog scale by 22 healthy women. RESULTS: In study I, the UtL was carried out successfully in 92 (98.9%) of 93 cases by 16 different gynecologists. It was rated as easy to perform in 84.8% of patients but as rather difficult in cancer patients (odds ratio, 5.559; 95% confidence interval, 1.434-21.546; P = 0.007). For benign conditions, dilatation before UtL was associated with menopause status (odds ratio, 4.929; 95% confidence interval, 1.439-16.884; P = 0.016). In study II, the pain during UtL was rated with a median visual analog scale score of 1.6. During a period of 4 weeks after UtL, none of the participants had to use medication or developed symptoms requiring medical attention. The UtL took 6.5 minutes on average. The amount of extracted DNA was above the lower limit for a sensitive, deep-sequencing mutation analysis in all cases. CONCLUSIONS: Our studies demonstrate that the UtL, using the new catheter, is a safe, reliable, and well-tolerated procedure, which does not require elaborate training. Therefore, UtL fulfils all prerequisites to be used in a potential screening setting.
Asunto(s)
Neoplasias de la Mama/diagnóstico , Cateterismo/instrumentación , Trompas Uterinas/patología , Neoplasias Ováricas/diagnóstico , Irrigación Terapéutica/instrumentación , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma in Situ/diagnóstico , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Estudios de Casos y Controles , Cateterismo/efectos adversos , ADN de Neoplasias/genética , Trompas Uterinas/cirugía , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Irrigación Terapéutica/efectos adversos , Proteína p53 Supresora de Tumor/genética , Útero/patología , Útero/cirugía , Adulto JovenRESUMEN
At initial diagnosis, most patients with small-cell lung cancer (SCLC) present with metastatic disease with a high number of tumor cells (CTCs) circulating in the blood. We analyzed RNA transcripts specific for neuroendocrine and for epithelial cell lineages, and Notch pathway delta-like 3 ligand (DLL3), the actionable target of rovalpituzumab tesirine (Rova-T) in CTC samples. Peripheral blood samples from 48 SCLC patients were processed using the microfluidic Parsortix™ technology to enrich the CTCs. Blood samples from 26 healthy donors processed in the same way served as negative controls. The isolated cells were analyzed for the presence of above-mentioned transcripts using quantitative PCR. In total, 16/51 (31.4%) samples were CTC-positive as determined by the expression of epithelial cell adhesion molecule 1 (EpCAM), cytokeratin 19 (CK19), chromogranin A (CHGA), and/or synaptophysis (SYP). The epithelial cell lineage-specific EpCAM and/or CK19 gene expression was observed in 11 (21.6%) samples, and positivity was not associated with impaired survival. The neuroendocrine cell lineage-specific CHGA and/or SYP were positive in 13 (25.5%) samples, and positivity was associated with poor overall survival. DLL3 transcripts were observed in four (7.8%) SCLC blood samples and DLL3-positivity was similarly associated with poor overall survival (OS). CTCs in SCLC patients can be assessed using epithelial and neuroendocrine cell lineage markers at the molecular level. Thus, the implementation of liquid biopsy may improve the management of lung cancer patients, in terms of a faster diagnosis, patient stratification, and on-treatment therapy monitoring.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Pulmonares/diagnóstico , Microfluídica/métodos , Células Neoplásicas Circulantes/patología , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Transcriptoma , Anciano , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patologíaRESUMEN
RT-qPCR is a highly sensitive approach to detect rare transcripts, as derived from circulating tumor cells (CTCs) in the blood of cancer patients. However, the presence of unwanted leukocytes often leads to false positive results. Here, we evaluated whether the micro-fluidic Parsortix™ technology is appropriate to remove these leukocytes and thereby finally to improve the overall approach. In this study, we established a workflow including the micro-fluidic Parsortix™ technology for the molecular detection of CTC related transcripts. Background levels of EpCAM, PPIC, TUSC3, and MAL2 were efficiently removed due to an up to 106-fold depletion of leukocytes. The presence of these gene markers was observed in Parsortix™-enriched blood samples from patients with primary and recurrent gynecological cancer (32% and 14%), as well as in 86% of the metastatic breast cancer samples, at a very high specificity. In the ovarian cancer samples, PPIC was the most prominent gene marker, contributing to all positive cases and at least to 70% of the positive cases after pre-amplification of the respective target genes. Expanding the analytical panel up to 29 gene markers further increased the positivity rate (primary gynecological cancer: 95%, recurrent gynecological cancer: 100%, metastatic breast cancer: 92%). The established workflow strongly improved the overall molecular analysis of the target cells by the efficient removal of contaminating cells, and, thereby offers great promise for the molecular characterization of CTCs.
RESUMEN
High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer and is responsible for most deaths caused by gynecological cancers. Numerous candidate biomarkers were identified for this disease in the last decades, but most were not sensitive or specific enough for clinical applications. Hence, new biomarkers for HGSOC are urgently required. This study aimed to identify new markers by isolating different extracellular vesicle (EV) types from the ascites of ovarian cancer patients according to their affinities for lipid-binding proteins and analyzing their protein cargo. This approach circumvents the low signal-to-noise ratio when using biological fluids for biomarker discovery and the issue of contamination by large non-EV complexes. We isolated and analyzed three distinct EV populations from the ascites of patients with ovarian cancer or cirrhosis and observed that Annexin V-binding EVs have higher levels of matrix metalloproteinase 9 in malignant compared to portal-hypertensive ascites. As this protein was not detected in other EV populations, this study validates our approach of using different EV types for optimal biomarker discovery. Furthermore, MMP9 in Annexin V-binding EVs could be a HGSOC biomarker with enhanced specificity, because its identification requires detection of two distinct components, that is, lipid and protein.