Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 260(2): 37, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922354

RESUMEN

MAIN CONCLUSION: Knowledge of Ca2+-ATPases is imperative for improving crop quality/ food security, highly threatened due to global warming. Ca2+-ATPases modulates calcium, essential for stress signaling and modulating growth, development, and immune activities. Calcium is considered a versatile secondary messenger and essential for short- and long-term responses to biotic and abiotic stresses in plants. Coordinated transport activities from both calcium influx and efflux channels are required to generate cellular calcium signals. Various extracellular stimuli cause an induction in cytosolic calcium levels. To cope with such stresses, it is important to maintain intracellular Ca2+ levels. Plants need to evolve efficient efflux mechanisms to maintain Ca2+ ion homeostasis. Plant Ca2+-ATPases are members of the P-type ATPase superfamily and localized in the plasma membrane and endoplasmic reticulum (ER). They are required for various cellular processes, including plant growth, development, calcium signaling, and even retorts to environmental stress. These ATPases play an essential role in Ca2+ homeostasis and are actively involved in Ca2+ transport. Plant Ca2+-ATPases are categorized into two major classes: type IIA and type IIB. Although these two classes of ATPases share similarities in protein sequence, they differ in their structure, cellular localization, and sensitivity to inhibitors. Due to the emerging role of Ca2+-ATPase in abiotic and biotic plant stress, members of this family may help promote agricultural improvement under stress conditions. This review provides a comprehensive overview of P-type Ca2+-ATPase, and their role in Ca2+ transport, stress signaling, and cellular homeostasis focusing on their classification, evolution, ion specificities, and catalytic mechanisms. It also describes the main aspects of the role of Ca2+-ATPase in transducing signals during plant biotic and abiotic stress responses and its role in plant development and physiology.


Asunto(s)
ATPasas Transportadoras de Calcio , Calcio , Plantas , Estrés Fisiológico , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Plantas/enzimología , Plantas/metabolismo , Homeostasis , Señalización del Calcio , Transducción de Señal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Retículo Endoplásmico/metabolismo
2.
Mol Biol Rep ; 50(2): 1575-1593, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36520360

RESUMEN

BACKGROUND: Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants. METHODS AND RESULTS: In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha-1) and low N (60 kg ha-1). Cultivar Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic efficiency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism and physiological assimilation. CONCLUSION: Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for nitrogen utilization efficiency at low N treatment.


Asunto(s)
Nitrógeno , Oryza , Nitrógeno/metabolismo , Oryza/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Plantas/genética , Perfilación de la Expresión Génica
3.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742855

RESUMEN

Excessive use of nitrogenous fertilizers to enhance rice productivity has become a significant source of nitrogen (N) pollution and reduced sustainable agriculture. However, little information about the physiology of different growth stages, agronomic traits, and associated genetic bases of N use efficiency (NUE) are available at low-N supply. Two rice (Oryza sativa L.) cultivars were grown with optimum N (120 kg ha-1) and low N (60 kg ha-1) supply. Six growth stages were analyzed to measure the growth and physiological traits, as well as the differential proteomic profiles, of the rice cultivars. Cultivar Panvel outclassed Nagina 22 at low-N supply and exhibited improved growth and physiology at most of the growth stages and agronomic efficiency due to higher N uptake and utilization at low-N supply. On average, photosynthetic rate, chlorophyll content, plant biomass, leaf N content, and grain yield were decreased in cultivar Nagina 22 than Panvel was 8%, 11%, 21%, 19%, and 22%, respectively, under low-N supply. Furthermore, proteome analyses revealed that many proteins were upregulated and downregulated at the different growth stages under low-N supply. These proteins are associated with N and carbon metabolism and other physiological processes. This supports the genotypic differences in photosynthesis, N assimilation, energy stabilization, and rice-protein yield. Our study suggests that enhancing NUE at low-N supply demands distinct modifications in N metabolism and physiological assimilation. The NUE may be regulated by key identified differentially expressed proteins. These proteins might be the targets for improving crop NUE at low-N supply.


Asunto(s)
Oryza , Agricultura , Fertilizantes , Nitrógeno/metabolismo , Oryza/metabolismo , Proteómica
4.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272790

RESUMEN

Sulfur (S) is an essential element for all forms of life. It is involved in numerous essential processes because S is considered as the primary source of one of the essential amino acids, methionine, which plays an important role in biological events. For the control and regulation of sulfate in a metabolic network through fluxomics, a non-invasive tool is highly desirable that opens the door to monitor the level of the sulfate in real time and space in living cells without fractionation of the cells or tissue. Here, we engineered a FRET (fluorescence resonance energy transfer) based sensor for sulfate, which is genetically-encoded and named as FLIP-SP (Fluorescent indicator protein for sulfate). The FLIP-SP can measure the level of the sulfate in live cells. This sensor was constructed by the fusion of fluorescent proteins at the N- and C-terminus of sulfate binding protein (sbp). The FLIP-SP is highly specific to sulfate, and showed pH stability. Real-time monitoring of the level of sulfate in prokaryotic and eukaryotic cells showed sensor bio-compatibility with living cells. We expect that this sulfate sensor offers a valuable strategy in the understanding of the regulation of the flux of sulfate in the metabolic network.


Asunto(s)
Sulfatos/metabolismo , Aminoácidos/metabolismo , Técnicas Biosensibles/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/metabolismo , Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Tiempo
5.
Physiol Mol Biol Plants ; 26(1): 83-94, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32158122

RESUMEN

Nitrogen (N) is the basis of plant growth and development and, is considered as one of the priming agents to elevate a range of stresses. Plants use solar radiations through photosynthesis, which amasses the assimilatory components of crop yield to meet the global demand for food. Nitrogen is the main regulator in the allocation of photosynthetic apparatus which changes of the photosynthesis (Pn) and quantum yield (Fv/Fm) of the plant. In the present study, dynamics of the photosynthetic establishment, N-dependent relation with chlorophyll fluorescence attributes and Rubisco efficacy was evaluated in low-N tolerant (cv. CR Dhan 311) and low-N sensitive (cv. Rasi) rice cultivars under low-N and optimum-N conditions. There was a decrease in the stored leaf N under low-N condition, resulting in the decreased Pn and Fv/Fm efficiency of the plants through depletion in the activity and content of Rubisco. The Pn and Fv/Fm followed the parallel trend of leaf N content during low-N condition along with depletion of intercellular CO2 concentration and overall conductance under low-N condition. Photosynthetic saturation curve cleared abrupt decrease of effective quantum yield in the low-N sensitive rice cultivar than the low-N tolerant rice. Also, the rapid light curve highlighted the unacclimated regulation of photochemical and non-photochemical quenching in the low-N condition. The low-N sensitive rice cultivar triumphed non-photochemical quenching, whereas the low-N tolerant rice cultivar rose gradually during the light curve. Our study suggested that the quantum yield is the key limitation for photosynthesis in low-N condition. Regulation of Rubisco, photochemical and non-photochemical quenching may help plants to grow under low-N level.

6.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31881651

RESUMEN

Isoleucine is one of the branched chain amino acids that plays a major role in the energy metabolism of human beings and animals. However, detailed investigation of specific receptors for isoleucine has not been carried out because of the non-availability of a tool that can monitor the metabolic flux of this amino acid in live cells. This study presents a novel genetically-encoded nanosensor for real-time monitoring of isoleucine in living cells. This nanosensor was developed by sandwiching a periplasmic binding protein (LivJ) of E. coli between a fluorescent protein pair, ECFP (Enhanced Cyan Fluorescent Protein), and Venus. The sensor, named GEII (Genetically Encoded Isoleucine Indicator), was pH stable, isoleucine-specific, and had a binding affinity (Kd) of 63 ± 6 µM. The GEII successfully performed real-time monitoring of isoleucine in bacterial and yeast cells, thereby, establishing its bio-compatibility in monitoring isoleucine in living cells. As a further enhancement, in silico random mutagenesis was carried out to identify a set of viable mutations, which were subsequently experimentally verified to create a library of affinity mutants with a significantly expanded operating range (96 nM-1493 µM). In addition to its applicability in understanding the underlying functions of receptors of isoleucine in metabolic regulation, the GEII can also be used for metabolic engineering of bacteria for enhanced production of isoleucine in animal feed industries.


Asunto(s)
Técnicas Biosensibles , Sistemas de Computación , Isoleucina/análisis , Nanopartículas/química , Escherichia coli/citología , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Viabilidad Microbiana , Simulación del Acoplamiento Molecular , Mutación/genética , Saccharomyces cerevisiae/citología
7.
Plant Physiol ; 174(2): 798-814, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28446637

RESUMEN

Water limitation of plants causes stomatal closure to prevent water loss by transpiration. For this purpose, progressing soil water deficit is communicated from roots to shoots. Abscisic acid (ABA) is the key signal in stress-induced stomatal closure, but ABA as an early xylem-delivered signal is still a matter of debate. In this study, poplar plants (Populus × canescens) were exposed to water stress to investigate xylem sap sulfate and ABA, stomatal conductance, and sulfate transporter (SULTR) expression. In addition, stomatal behavior and expression of ABA receptors, drought-responsive genes, transcription factors, and NCED3 were studied after feeding sulfate and ABA to detached poplar leaves and epidermal peels of Arabidopsis (Arabidopsis thaliana). The results show that increased xylem sap sulfate is achieved upon drought by reduced xylem unloading by PtaSULTR3;3a and PtaSULTR1;1, and by enhanced loading from parenchyma cells into the xylem via PtaALMT3b. Sulfate application caused stomatal closure in excised leaves and peeled epidermis. In the loss of sulfate-channel function mutant, Atalmt12, sulfate-triggered stomatal closure was impaired. The QUAC1/ALMT12 anion channel heterologous expressed in oocytes was gated open by extracellular sulfate. Sulfate up-regulated the expression of NCED3, a key step of ABA synthesis, in guard cells. In conclusion, xylem-derived sulfate seems to be a chemical signal of drought that induces stomatal closure via QUAC1/ALMT12 and/or guard cell ABA synthesis.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Estomas de Plantas/fisiología , Sulfatos/metabolismo , Xilema/metabolismo , Ácido Abscísico/metabolismo , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Femenino , Regulación de la Expresión Génica de las Plantas , Mutación , Oocitos/metabolismo , Transportadores de Anión Orgánico/genética , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/fisiología , Transducción de Señal , Xenopus laevis , Xilema/química
8.
Biochem Biophys Res Commun ; 487(1): 54-61, 2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28389241

RESUMEN

SHP-1 (Src homology 2 domain containing protein tyrosine phosphatase) is a known negative regulator of insulin signaling and inflammation. To date, the molecular mechanism of metformin in modulating SHP-1 expression has remained elusive. In the present study, we have investigated the role of SHP-1 in relation to anti-hyperglycemic and anti-inflammatory actions of metformin in an obese phenotype mouse model. We observed that metformin treatment significantly reduced SHP-1 activity in obese mice, leading to improved insulin sensitivity. Additionally, metformin down regulated inflammatory markers like TLR2, TLR4, CD80, CD86, NF-κB, STAT1 and suppressed adipose tissue inflammation by efficiently polarizing adipose tissue macrophages toward anti-inflammatory state by way of indirect inhibition of SHP-1 mRNA and protein expressions. Our study suggests that metformin exerts its insulin sensitizing effects via inhibition of SHP-1 activity and expression.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina , Metformina/administración & dosificación , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Hipoglucemiantes/administración & dosificación , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores
9.
Future Oncol ; 12(10): 1287-98, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26987952

RESUMEN

The altered expression of SHP-1 (SH2 domain-containing protein tyrosine phosphatase) as a consequence of promoter hypermethylation or mutations has evidently been linked to cancer development. The notion of being a cancer drug target is conceivable as SHP-1 negatively regulates cell cycle and inflammatory pathways which are an inevitable part of oncogenic transformation. In the present review, we try to critically analyze the role of SHP-1 in cancer progression via regulating the above mentioned pathways with the major emphasis on cell cycle components and JAK/STAT pathway, commencing with the SHP-1 biology in immune cell signaling. Lastly, we have provided the future directions for researchers to encourage SHP-1 as a prognostic marker and curative target for this debilitating disease called as cancer.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal/fisiología , Animales , Progresión de la Enfermedad , Humanos
10.
J Nanobiotechnology ; 14(1): 49, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27334743

RESUMEN

BACKGROUND: Engineering microorganisms in order to improve the metabolite flux needs a detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer (FRET) based genetically encoded nanosensors represent a promising tool for measuring the metabolite levels and corresponding rate changes in live cells. Here, we report the development of a series of FRET based genetically encoded nanosensor for real time measurement of lysine at cellular level, as the improvement of microbial strains for the production of L-lysine is of major interest in industrial biotechnology. RESULTS: The lysine binding periplasmic protein (LAO) from Salmonella enterica serovar typhimurium LT2 strain was used as the reporter element for the sensor. The LAO was sandwiched between GFP variants i.e. cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Affinity, pH stability, specificity and metal ions effects was scrutinized for the in vitro characterization of this nanosensor, named as FLIPK. The FLIPK is specific to lysine and found to be stable with the pH within the physiological range. The calculated affinity (K d ) of FLIPK was 97 µM. For physiological applications, mutants with different binding affinities were also generated and investigated in vitro. The developed nanosensor efficiently monitored the intracellular level of lysine in bacterial as well as yeast cell. CONCLUSION: The developed novel lysine fluorescence resonance energy transfer sensors can be used for in vivo monitoring of lysine levels in prokaryotes as well as eukaryotes. The potential of these sensors is that they can be used as reporter tools in the development of metabolically engineered microbial strains or for real-time monitoring of intracellular lysine during fermentation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Lisina/análisis , Imagen Óptica/métodos , Saccharomyces cerevisiae/citología , Salmonella typhi/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Salmonella typhi/genética
11.
Biotechnol Lett ; 37(10): 1919-28, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26184603

RESUMEN

Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Análisis de Flujos Metabólicos/métodos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
12.
Ecotoxicol Environ Saf ; 115: 101-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25682587

RESUMEN

For the past few decades continuous increase in the levels of tropospheric ozone (O3) concentrations is posing to be a threat for agricultural productivity. Two high yielding tropical rice cultivars (Malviya dhan 36 and Shivani) were evaluated against different concentrations of O3 under field conditions. Experimental design included filtered chambers, non-filtered chambers having ambient O3 and 10 and 20ppb elevated O3 above the ambient. Study was conducted to assess differential response if any in induction of antioxidative defense system, genome stability, leaf proteome, yield and quality of the product in both the test cultivars. Superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were induced under ambient and elevated levels of O3. Native polyacrylamide gel electrophoresis (PAGE) of SOD, CAT and POD also displayed increased enzymatic activity along with associated alterations in specific isoforms. Ascorbic acid, thiols and phenolics were also stimulated at ambient and elevated O3. Structural alterations in DNA of rice plants due to O3 affecting its genome template stability (GTS) was examined using RAPD technique. 2-D PAGE revealed 25 differential spots in Malviya dhan 36 and 36 spots in Shivani after O3 treatment with reductions in RuBisCO subunits. Reductions in yield and change in the quality of grains were also noticed.


Asunto(s)
Antioxidantes/metabolismo , Oryza/efectos de los fármacos , Ozono/toxicidad , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Genoma de Planta , Glutatión Reductasa/metabolismo , Oryza/enzimología , Oryza/genética , Oryza/metabolismo , Peroxidasa/metabolismo , Polimorfismo Genético , Proteoma/efectos de los fármacos , Superóxido Dismutasa/metabolismo
13.
Physiol Mol Biol Plants ; 21(1): 19-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25649735

RESUMEN

Inorganic nitrogen (N) is a key limiting factor of the agricultural productivity. Nitrogen utilization efficiency has significant impact on crop growth and yield as well as on the reduction in production cost. The excessive nitrogen application is accompanied with severe negative impact on environment. Thus to reduce the environmental contamination, improving NUE is need of an hour. In our study we have deployed comparative proteome analysis using 2-DE to investigate the effect of the nitrogen nutrition on differential expression pattern of leaf proteins in low-N sensitive and low-N tolerant wheat (Triticum aestivum L.) varieties. Results showed a comprehensive picture of the post-transcriptional response to different nitrogen regimes administered which would be expected to serve as a basic platform for further characterization of gene function and regulation. We detected proteins related to photosynthesis, glycolysis, nitrogen metabolism, sulphur metabolism and defence. Our results provide new insights towards the altered protein pattern in response to N stress. Through this study we suggest that genes functioning in many physiological events coordinate the response to availability of nitrogen and also for the improvement of NUE of crops.

14.
Plant Cell Rep ; 33(6): 919-28, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24493254

RESUMEN

Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield. This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using (14)C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 µM) and sufficient (100 µM) P concentrations were exposed to (14)CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative (14)C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.


Asunto(s)
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Fabaceae/fisiología , Fósforo/metabolismo , Exudados de Plantas/metabolismo , Estrés Fisiológico , Transporte Biológico , Biomasa , Radioisótopos de Carbono , Productos Agrícolas , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Variación Genética , Genotipo , Fenotipo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Suelo/química
15.
ScientificWorldJournal ; 2012: 105712, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22973165

RESUMEN

BOD (Biochemical oxygen demand) is the pollution index of any water sample. One of the main factors influencing the estimation of BOD is the nature of microorganisms used as seeding material. In order to meet the variation in wastewater characteristics, one has to be specific in choosing the biological component that is the seeding material. The present study deals with the estimation of BOD of dairy wastewater using a specific microbial consortium and compares of the results with seeding material (BODSEED). Bacterial strains were isolated from 5 different sources and were screened by the conventional BOD method. The selected microbial seed comprises of Enterobacter sp., Pseudomonas sp. BOD : COD (Chemical oxygen demand) ratio using the formulated seed comes in the range of 0.7-0.8 whereas that using BODSEED comes in the ratio of 0.5-0.6. The ultimate BOD (UBOD) was also performed by exceeding the 3-day dilution BOD test. After 90 days, it has been observed that the ratio of BOD : COD increased in case of selected consortium 7 up to 0.91 in comparison to 0.74 by BODSEED. The results were analyzed statistically by t-test and it was observed that selected consortium was more significant than the BODSEED.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno/métodos , Residuos Industriales/análisis , Aguas del Alcantarillado/análisis , Microbiología del Agua , Animales , Biodegradación Ambiental , Medios de Cultivo/metabolismo , Industria Lechera , Enterobacter/aislamiento & purificación , Enterobacter/metabolismo , Industria de Alimentos/métodos , Consorcios Microbianos , Leche/metabolismo , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Reproducibilidad de los Resultados , Aguas del Alcantarillado/microbiología
16.
J Environ Biol ; 33(1): 9-20, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23033637

RESUMEN

Plant biomass, antioxidant enzymes activity, ions accumulation and proline level in four soybean cultivars were investigated atdifferent NaCl concentrations (20, 40, 60, 80 and 100 mM) applied to plants 15 days after sowing. There was a significant decrease in plant biomass and soluble protein content with each NaCl treatment. Accumulation of Na+ and Cl- was maximum in roots, followed by the stem and leaves in all the treated cultivars; Pusa 9712 being the top accumulator. On the contrary, K+ and Ca2+ ion concentrations were inhibited in all the treated cultivars. Activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and proline content increased significantly in all the cultivars with each NaCl treatment. The maximum increase was found in Pusa 9712. However, catalase activity decreased in all the cultivars except in Pusa 9712. On the whole, Pusa 9712 was most efficient in managing protection against salinity stress.


Asunto(s)
Antioxidantes/metabolismo , Glycine max/enzimología , Glycine max/metabolismo , Cloruro de Sodio/toxicidad , Biomasa , Calcio/química , Relación Dosis-Respuesta a Droga , Ecosistema , Iones/metabolismo , Potasio/química , Cloruro de Sodio/administración & dosificación , Glycine max/efectos de los fármacos , Agua/química
17.
J Environ Biol ; 33(2): 239-44, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23033687

RESUMEN

Contamination of soil and water by chromium (Cr) is increasing enormously due to anthropogenic activities. The potential of plants to accumulate or stabilize Cr compounds forthe purpose of remediation of Cr contamination has been recognized in recent years. We conducted pot experiments to study photosynthesis and associated attributes in cv Pusa Jai Kisan of Indian mustard under natural as well as Cr-loaded environmental conditions. High doses of Cr caused toxic effects in plants, as evident by a reduction in photosynthetic rate (24.3 to 8.7 micromol CO2 m(-2)s(-1) at 80 DAS), nitrate reductase activity (3.76 to 1.30 micromol nitrite g(-1) f. wt. h(-1) at 80 DAS) and the contents of chlorophyll (1.49 to 0.86 mg g(-1) f. wt. at 80 DAS) and soluble protein (2.96 to 1.93 mg g(-1) f. wt. at 80 DAS). Since plants lack a specific Cr-transport system, mineral nutrient contents also changed due to Cr toxicity. Cr accumulation in different plant parts was affected by both duration and dose of Cr treatments, with a maximal localization of Cr in roots (up to 0.77 mg g(-1) d. wt) at initial stages (40 DAS) and in stem (up to 4.19 mg g(-1) d. wt) at the later stage (80 DAS) of plant growth. Thus, Indian mustard was able to withstand Cr stress and protect itself from Cr toxicity by altering various metabolic processes. Owing to its ability to accumulate large amounts of Cr, it may be useful in the process of land reclamation.


Asunto(s)
Cromo/toxicidad , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/fisiología , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Aminoácidos/metabolismo , Biodegradación Ambiental , Clorofila/metabolismo , Cromo/administración & dosificación , Relación Dosis-Respuesta a Droga , Nitratos/metabolismo , Estomas de Plantas/fisiología , Factores de Tiempo
18.
Plants (Basel) ; 11(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35736711

RESUMEN

Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus.

19.
Plants (Basel) ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36235446

RESUMEN

Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.

20.
Viruses ; 14(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36146743

RESUMEN

Background: Very few studies have been reported on hepatitis B in the State of Azad Jammu and Kashmir, Pakistan, and none of them are specific to the prevalence and causes of hepatitis B spread among educational institutes. This study aimed to estimate the prevalence of hepatitis B infection and its associated risk factors among the University of AJ and K population. Methods: An observational, cross-sectional, and analytical study was conducted with 7015 students and employees. Hepatitis B was detected by rapid immunochromatographic tests (ICTs), enzyme-linked immunosorbent assay (ELISA), and real-time quantitative PCR. A questionnaire and interview method was used to assess the disease knowledge and associated risk factors with hepatitis B through Chi-square, Fisher's exact test, and paired t-test. Results: Of the participants, 150 (2.13%) were found positive for the hepatitis B surface antigen (57.3% male and 42.7% female). Only 0.3% participants were found fully vaccinated against the hepatitis B virus. Among ethnic groups, the Syed tribe was found more prevalent for hepatitis B infection (40.6%), while use of contaminated mourning blades (95% CI: p = 0.0001) was found as an overlooked risk factor. Hepatitis preventive awareness sessions were found to be very significant (p = 0.0001). Conclusions: The study showed that an overlooked risk factor is playing a key role in the spread of HBV in a tribe living worldwide, which must be addressed globally to eradicate hepatitis B. In Pakistan, a country-wide annual HBV vaccination program should be launched to control hepatitis B.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B , Estudios Transversales , Femenino , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Virus de la Hepatitis B , Humanos , Masculino , Prevalencia , Factores de Riesgo , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA