Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(7): 4680-4686, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324776

RESUMEN

Precious-metal-free spinel oxide electrocatalysts are promising candidates for catalyzing the oxygen reduction reaction (ORR) in alkaline fuel cells. In this theory-driven study, we use joint density functional theory (JDFT) in tandem with supporting electrochemical measurements to identify a novel theoretical pathway for the ORR on cubic Co3O4 nanoparticle electrocatalysts, which aligns more closely with experimental results than previous models. The new pathway employs the cracked adsorbates *(OH)(O) and *(OH)(OH), which, through hydrogen bonding, induce spectator surface *H. This results in an onset potential closely matching experimental values, in stark contrast to the traditional ORR pathway, which keeps adsorbates intact and overestimates the onset potential by 0.7 V. Finally, we introduce electrochemical strain spectroscopy (ESS), a groundbreaking strain analysis technique. ESS combines ab initio calculations with experimental measurements to validate the proposed reaction pathways and pinpoint rate-limiting steps.

2.
Cell Commun Signal ; 22(1): 9, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167133

RESUMEN

BACKGROUND: Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION: Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Escape del Tumor , Inmunoterapia , Antígenos de Neoplasias , Neoplasias/terapia
3.
Mol Biol Rep ; 50(9): 7589-7595, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37528312

RESUMEN

BACKGROUND: High-fat diets (HFD) have recently become a public health concern. We hypothesize that HFD induces exosomes biogenesis in the lung tissue of rat model. METHODS AND RESULTS: Sixteen adult male Wistar rats were fed with HFD or a regular chow diet for 3 months. The histopathological changes in lung tissues were measured by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage (BAL) was performed to assay exosomes by acetylcholinesterase enzyme (AhCE) activity. Real-time PCR (qPCR) was used to evaluate Rab27-b, Alix, and IL-1ß expression, while the immunohistochemical examination was performed for CD81 expression in lung tissues. In addition, expression of IL-1ß was detected by ELISA. We found pathological alterations in the lung tissue of HFD animals. AhCE activity along with the expression level of Rab27-b, Alix, and IL-1ß was increased in HFD animals (p < 0.05). Immunohistochemical staining showed that expression of CD81 was increased in lung tissues of HFD animals compared with the control group (p < 0.05). CONCLUSION: Hence, HFD induced exosomes biogenesis and histopathological changes with IL-1ß expression in rats' lung tissues.


Asunto(s)
Dieta Alta en Grasa , Exosomas , Ratas , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Acetilcolinesterasa , Pulmón/patología
4.
Cell Biochem Funct ; 41(8): 1008-1015, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843018

RESUMEN

Exosomes, heterogeneous, membrane-bound nanoparticles that originated from eukaryotic cells, contribute to intracellular communication by transferring various biomolecules both on their surface and as internal cargo. One of the most significant current discussions on cancer progression is noncoding RNAs cargo of exosomes, which can regulate angiogenesis in tumor. A growing body of evidence shows that exosomes from tumor cells contain various microRNAs, long noncoding RNAs, and circular RNAs that can promote tumor progression by inducing angiogenesis. However, some noncoding RNAs may inhibit cancer angiogenesis. Targeting angiogenic noncoding RNA of exosomes may serve as a hopeful implement for cancer therapy. In this review, we discuss the latest knowledge of the roles of exosomal noncoding RNAs in tumor angiogenesis Understanding the biology of exosomal noncoding RNAs can help scientists plan exosomes-based innovations for the treatment of cancer angiogenesis and cancer biomarkers.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Angiogénesis , Estudios Prospectivos , Neoplasias/genética , Neoplasias/patología , MicroARNs/genética , ARN no Traducido/genética , ARN Largo no Codificante/genética , Exosomas/genética , Exosomas/patología , Biomarcadores de Tumor/genética
5.
Cell Biochem Funct ; 41(1): 78-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335538

RESUMEN

It has been shown that type 2 Diabetes Mellitus (T2DM) changes the paracrine activity of several cell types. Whether the biogenesis of exosomes is changed during diabetic conditions is the subject of debate. Here, we investigated the effect of T2M on exosome biogenesis in rat pulmonary tissue. Rats received a high-fat diet regime and a single low dose of Streptozocin to mimic the T2DM-like condition. A total of 8 weeks after induction of T2DM, rats were subjected to several analyses. Besides histological examination, vascular cell adhesion molecule 1 (VCAM-1) levels were detected using immunohistochemistry (IHC) staining. Transcription of several genes such as IL-1ß, Alix, and Rab27b was calculated by real-time polymerase chain reaction assay. Using western blot analysis, intracellular CD63 levels were measured. The morphology and exosome secretion activity were assessed using acetylcholinesterase (AChE) assay and scanning electron microscopy, respectively. Histological results exhibited a moderate-to-high rate of interstitial pneumonia with emphysematous changes. IHC staining showed an increased VCAM-1 expression in the diabetic lungs compared with the normal conditions (p < .05). Likewise, we found the induction of IL-1ß, and exosome-related genes Alix and Rab27b under diabetic conditions compared with the control group (p < .05). Along with these changes, protein levels of CD63 and AChE activity were induced upon the initiation of T2DM, indicating accelerated exosome biogenesis. Taken together, current data indicated the induction of exosome biogenesis in rat pulmonary tissue affected by T2DM. It seems that the induction of inflammatory niche is touted as a stimulatory factor to accelerate exosome secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Neumonía , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Acetilcolinesterasa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo , Pulmón/metabolismo
6.
Cell Commun Signal ; 20(1): 69, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606749

RESUMEN

BACKGROUND: Many eukaryote cells produce membrane-enclosed extracellular vesicles (EVs) to establish cell-to-cell communication. Plant-derived EVs (P-EVs) contain proteins, RNAs, lipids, and other metabolites that can be isolated from the juice, the flesh, and roots of many species. METHODS: In the present review study, we studied numerous articles over the past two decades published on the role of P-EVs in plant physiology as well as on the application of these vesicles in different diseases. RESULTS: Different types of EVs have been identified in plants that have multiple functions including reorganization of cell structure, development, facilitating crosstalk between plants and fungi, plant immunity, defense against pathogens. Purified from several edible species, these EVs are more biocompatible, biodegradable, and extremely available from many plants, making them useful for cell-free therapy. Emerging evidence of clinical and preclinical studies suggest that P-EVs have numerous benefits over conventional synthetic carriers, opening novel frontiers for the novel drug-delivery system. Exciting new opportunities, including designing drug-loaded P-EVs to improve the drug-delivery systems, are already being examined, however clinical translation of P-EVs-based therapies faces challenges. CONCLUSION: P-EVs hold great promise for clinical application in the treatment of different diseases. In addition, despite enthusiastic results, further scrutiny should focus on unravelling the detailed mechanism behind P-EVs biogenesis and trafficking as well as their therapeutic applications. Video Abstract.


Asunto(s)
Exosomas , Vesículas Extracelulares , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/metabolismo , Nanomedicina
7.
Mol Biol Rep ; 49(5): 3721-3728, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35118570

RESUMEN

BACKGROUND: Asthma, an inflammatory illness of the lungs, remains the most common long-term disease amongst children. This study tried to elaborate the status of apoptosis in asthmatic pulmonary niche after the application of rat mesenchymal stem cells (MSC-CM)-derived secretome. METHODS AND RESULTS: Here, we randomly allocated male Wistar rats into three groups (n = 8); Control animals were intratracheally given 50 µl vehicle. In control-matched sensitized rats, 50 µl normal saline was used. In the last group, 50 µl MSC-CM was applied. Two-week post-administration, transcription of T-bet, GATA-3, Bax, Bcl-2 and Caspase-3 was measured by gene expression analysis. Pathological injuries were monitored using H&E staining. The BALF level of TNF-α was measured using ELISA assay. In asthmatic rats received MSC-CM, the expression of T-bet was increased while the level of GATA-3 decreased compared to the S group (p < 0.05). Levels of BALF TNF-α were suppressed in asthmatic niche after MSC-CM administration (p < 0.05). Compared to the asthmatic group, MSC-CM had potential to alter the expression of apoptosis-related genes in which the expression of Bax and Caspase 3 was decreased and the expression of pro-survival factor, Bcl-2 increased (p < 0.05). CONCLUSION: Our data notified the potency of direct administration of MSC-CM in the alleviation of airway inflammation, presumably by down regulating apoptotic death in pulmonary niche.


Asunto(s)
Asma , Células Madre Mesenquimatosas , Animales , Apoptosis , Asma/metabolismo , Medios de Cultivo Condicionados/farmacología , Pulmón/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
8.
J Nanobiotechnology ; 20(1): 310, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765003

RESUMEN

BACKGROUND: Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. RESULTS: Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. CONCLUSION: Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts.


Asunto(s)
Osteogénesis , Estroncio , Alginatos/farmacología , Animales , Colágeno , Durapatita , Hidrogeles/farmacología , Ratas , Estroncio/farmacología
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430452

RESUMEN

There remains a vital necessity for new therapeutic approaches to combat metastatic cancers, which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs, regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored. In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need the establishment of standards for MSCs-Exo isolation and characterization as well as loading and engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles for cancer treatment.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Neoplasias , Humanos , Neovascularización Patológica , Neoplasias/terapia
10.
Cell Tissue Res ; 384(2): 389-401, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33459880

RESUMEN

Human endothelial progenitor cells (EPCs) were isolated from cord blood samples and enriched by magnetic activated cell sorting method based on the CD133 marker. Cells were incubated with different doses of bacterial lipopolysaccharide, ranging from 2, 5, 10, 50, 100, 200, 250, 500, to 1000 µg/ml, for 48 h. The cell survival rate was determined by using MTT assay. To confirm activation of the toll-like receptor signaling pathway, PCR array analysis was performed. Protein levels of ERK1/2, p-ERK1/2, NF-ƙB and TRIF proteins were measured using western blotting. The content of TNF-α and lipoprotein lipase activity were analyzed by immunofluorescence imaging. Flow cytometric analysis of CD31 was performed to assess the maturation rate. Cell migration was studied by the Transwell migration assay. The expression of genes related to exosome biogenesis was measured using real-time PCR analysis. In vivo gel plug angiogenesis assay was done in nude mice. Lipopolysaccharide changed endothelial progenitor cells' survival in a dose-dependent manner with maximum viable cells in groups treated with 2 µg/ml. PCR array analysis showed the activation of toll-like signaling pathways after exposure to LPS (p<0.05). Western blotting analysis indicated an induction of p-ERK1/2 and Erk1/2, NF-kB and TRIF in LPS-treated EPCs compared with the control (p<0.05). Immunofluorescence staining showed an elevation of TNF-α and lipoprotein lipase activity after lipopolysaccharide treatment (p<0.05). Lipopolysaccharide increased EPC migration and expression of exosome biogenesis-related genes (p<0.05). In vivo gel plug analysis revealed enhanced angiogenesis in cells exposed to bacterial lipopolysaccharide. Data highlighted the close relationship between the toll-like receptor signaling pathway and functional activity in EPCs.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
11.
Mol Biol Rep ; 48(5): 4687-4702, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013393

RESUMEN

In a mature organism, tissue homeostasis is regulated by cell division and cell demise as the two major physiological procedures. There is increasing evidence that deregulation of these processes is important in the pathogenicity of main diseases, including myocardial infarction, stroke, atherosclerosis, and inflammatory diseases. Therefore, there are ongoing efforts to discover modulating factors of the cell cycle and cell demise planners aiming at shaping innovative therapeutically modalities to the therapy of such diseases. Although the life of a cell is terminated by several modes of action, a few cell deaths exist-some of which resemble apoptosis and/or necrosis, and most of them are different from one another-that contribute to a wide range of functions to either support or disrupt the homoeostasis. Even in normal physiological conditions, cell life is severe within the cardiovascular system. Cells are persistently undergoing stretch, contraction, injurious metabolic byproducts, and hemodynamic forces, and a few of cells sustain decade-long lifetimes. The duration of vascular disease causes further exposure of vascular cells to a novel range of offences, most of which induce cell death. There is growing evidence on consequences of direct damage to a cell, as well as on responses of adjacent and infiltrating cells, which also have an effect on the pathology. In this study, by focusing on different pathways of cell death in different vascular diseases, an attempt is made to open a new perspective on the therapeutic goals associated with cell death in these diseases.


Asunto(s)
Apoptosis/genética , Muerte Celular/genética , Necrosis/inducido químicamente , Enfermedades Vasculares/genética , Aterosclerosis/genética , Aterosclerosis/patología , Homeostasis/genética , Humanos , Inflamación/genética , Inflamación/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Necrosis/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Enfermedades Vasculares/patología
12.
Cell Biochem Funct ; 39(1): 60-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33164248

RESUMEN

Ageing induces a great risk factor that participates in progressing various degenerative diseases morbidities. The main characteristic of ageing is the failure in maintaining homeostasis in the organs with a cellular senescence. Senescence is characterized by reduced cell growth, evade cellular death, and acquiring a senescence-associated secretory phenotype (SASP). Mesenchymal stem cells (MSCs) are advantageous cells in regenerative medicine, exerting pleiotropic functions by producing soluble factors, such as exosomes. MSCs and their exosomes (MSCs-Exo) kinetic are affected by ageing and other aged exosomes. Exosomes biogenesis from aged MSCs is accelerated and their exosomal cargoes, such as miRNAs, vary as compared to those of normal cells. Besides, exosomes from aged MSCs loss their regenerative potential and may negatively influence the function of recipient cells. MSCs-Exo can improve ageing and age-related diseases; however, the detailed mechanisms remain yet elusive. Although exosomes-therapy may serve as a new approach to combat ageing, the translation of preclinical results to clinic needs more extensive investigation on exosomes both on their biology and related techniques. Overall, scrutiny on the effect of ageing on MSCs and vice versa is vital for designing novel therapy using MSCs with focus on the management of older individuals.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Regeneración , Animales , Humanos
13.
Cell Biochem Funct ; 39(4): 468-477, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33491214

RESUMEN

Most cells release extracellular vesicles (EVs) mediating intercellular communication via transferring various biomolecules including proteins, nucleic acids, and lipids. A subset of EVs is exosomes that promote tumorigenesis. Different tumour cells such as colorectal cancer (CRC) cells produce exosomes that participate in the progression of CRC. Exosomes cargo including proteins and miRNAs not only support proliferation and metastasis of tumour cells but also mediate chemoresistance, immunomodulation and angiogenesis. In addition, as exosomes are present in most body fluids, they can hold the great capacity for clinical usage in early diagnosis and prognosis of CRC. Exosomes from CRC (CRC-Exo) differentially contain proteins and miRNAs that make them a promising candidate for CRC diagnosis by a simple liquid-biopsy. Despite hopeful results, some challanges about exosomes terminology and definition remains to be clarified in further experiments. In addition, there are little clinical trials regarding the application of exosomes in CRC treatment, therefore additional studies are essential focusing on exosome biology and translation of preclinical findings into the clinic. The present study discusses the key role of exosomes in CRC progression and diagnosis. Furthermore, it describes the opportunity and challenges associated with using exosomes as tumour markers.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Antineoplásicos/farmacología , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico , Exosomas/efectos de los fármacos , Humanos , Neovascularización Patológica/diagnóstico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Microambiente Tumoral/efectos de los fármacos
14.
Cell Biochem Funct ; 39(6): 821-827, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34227133

RESUMEN

The emergence of an inflammatory condition such as asthma could affect the therapeutic potential of stem cells. Synopsis of previous documents yielded controversial outcomes, leading to a limitation of stem cell-based therapy in the clinical setting. This study aimed to assess the impact of asthmatic serum on the MSCs aging and dynamic growth in vitro. Rats were divided into control and asthmatic groups randomly. The asthmatic change was induced using OVA sensitization. The asthmatic structural changes are monitored by conventional Haematoxylin-Eosin staining. Thereafter, blood samples were taken and sera provided from each group. In this study, primary bone marrow mesenchymal stem cells were cultured in culture medium supplemented with normal and asthmatic serum for 7 days. The MSCs viability was examined using the MTT assay. The expression of the aging-related gene (ß-galactosidase), and stemness-related markers such as Sox2, Kfl-4 and p16INK4a were analysed by real-time PCR assay. Histological examination revealed chronic inflammatory remodelling which is identical to asthmatic changes. MTT assay showed a reduction of mesenchymal stem cell viability compared to the control group (P < .05). Real-time PCR analysis revealed a down-regulation of stemness-related markers Sox2, Kfl-4 and p16INK4a coincided with aging changes (ß-galactosidase) compared to the control group (P < .05). These data show the detrimental effect of asthmatic condition on bone marrow regenerative potential by accelerating early-stage aging in different stem cells and further progenitor cell depletion. SIGNIFICANCE OF THE STUDY: In such inflammatory conditions as asthma, the therapeutic potential of stem cells may be altered. We demonstrate that serum from asthmatic rats had the potential to reduce the viability of mesenchymal stem cells in vitro. Furthermore, we observed that the expression of the aging-related gene known ß-galactosidase was statistically increased in cells co-cultured with asthmatic serum. At the same time, expression of stemness-related markers Sox2, Kfl-4 and p16INK4a down-regulated. These results support the damaging effect of asthmatic condition on bone marrow regenerative ability by inducing early-stage aging in stem cells and additional progenitor cell reduction.


Asunto(s)
Asma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factores de Edad , Animales , Asma/patología , Enfermedad Crónica , Citometría de Flujo , Masculino , Células Madre Mesenquimatosas/patología , Ratas , Ratas Wistar
15.
J Transl Med ; 18(1): 249, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571337

RESUMEN

Angiogenesis is a multistep process and various molecules are involved in regulating it. Extracellular vesicles are cell-derived particles, secreted from several types of cells and are known to mediate cell-to-cell communication. These vesicles contain different bio-molecules including nucleic acids, proteins, and lipids, which are transported between cells and regulate physiological and pathological conditions in the recipient cell. Exosomes, 30-150 nm extracellular vesicles, and their key roles in tumorigenesis via promoting angiogenesis are of great recent interest. In solid tumors, the suitable blood supply is the hallmark of their progression, growth, and metastasis, so it can be supported by angiogenesis. Tumor cells abundantly release exosomes containing different kinds of biomolecules such as angiogenic molecules that contribute to inducing angiogenesis. These exosomes can be trafficked between tumor cells or between tumor cells and endothelial cells. The protein and nucleic acid cargo of tumor derived-exosomes can deliver to endothelial cells mostly by endocytosis, and then induce angiogenesis. Tumor derived-exosomes can be used as biomarker for cancer diagnosis. Targeting exosome-induced angiogenesis may serve as a promising tool for cancer therapy. Taken together, tumor derived-exosomes are the major contributors in tumor angiogenesis and a supposed target for antiangiogenic therapies. However, further scrutiny is essential to investigate the function of exosomes in tumor angiogenesis and clinical relevance of targeting exosomes for suppressing angiogenesis.


Asunto(s)
Exosomas , Neoplasias , Comunicación Celular , Células Endoteliales , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico
16.
J Transl Med ; 18(1): 474, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302971

RESUMEN

The solid tumor microenvironment possesses a hypoxic condition, which promotes aggressiveness and resistance to therapies. Hypoxic tumor cells undergo broadly metabolic and molecular adaptations and communicate with surrounding cells to provide conditions promising for their homeostasis and metastasis. Extracellular vesicles such as exosomes originating from the endosomal pathway carry different types of biomolecules such as nucleic acids, proteins, and lipids; participate in cell-to-cell communication. The exposure of cancer cells to hypoxic conditions, not only, increases exosomes biogenesis and secretion but also alters exosomes cargo. Under the hypoxic condition, different signaling pathways such as HIFs, Rab-GTPases, NF-κB, and tetraspanin are involved in the exosomes biogenesis. Hypoxic tumor cells release exosomes that induce tumorigenesis through promoting metastasis, angiogenesis, and modulating immune responses. Exosomes from hypoxic tumor cells hold great potential for clinical application and cancer diagnosis. Besides, targeting the biogenesis of these exosomes may be a therapeutic opportunity for reducing tumorigenesis. Exosomes can serve as a drug delivery system transferring therapeutic compounds to cancer cells. Understanding the detailed mechanisms involved in biogenesis and functions of exosomes under hypoxic conditions may help to develop effective therapies against cancer.


Asunto(s)
Exosomas , Neoplasias , Transformación Celular Neoplásica , Humanos , Hipoxia , Neoplasias/terapia , Microambiente Tumoral
17.
Cell Tissue Res ; 379(2): 223-230, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31754781

RESUMEN

Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Modelos Biológicos , Neovascularización Fisiológica , Transducción de Señal
18.
Exp Physiol ; 105(9): 1623-1633, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32715538

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim of the experiment was to highlight the regenerative capacity of bone marrow Kit+ cells in the restoration of asthmatic pulmonary function in the rat model. What is the main finding and its importance? Data showed that these cells were recruited successfully to the asthmatic niche after intratracheal administration and accelerated the regeneration of asthmatic lungs by the modulation of inflammation via the control of Gata3 and Tbx21 expression, leading to decreased tracheal responsiveness to methacholine and reduction of pathological remodelling. ABSTRACT: Allergic asthma is a T helper (Th) 2 immunological disorder with consequential uncontrolled inflammatory responses. There is an increasing demand to use new methods for the treatment of asthma based on modulation of the Th2-to-Th1 ratio in favour of the Th1 population. Accordingly, we decided to evaluate the effects of intratracheal administration of Kit+ bone marrow cells on tracheal responsiveness and the expression of Gata3 and Tbx21 genes. Forty male Wistar rats were allocated  randomly  into four experimental groups: healthy rats (control group), sensitized rats (OVA group), sensitized rats receiving Kit- cells (OVA+Kit- group) and sensitized rats receiving Kit+ cells (OVA+Kit+ group). Total and differential white blood cell counts, tracheal responsiveness to cumulative methacholine concentrations and histopathological analysis were evaluated. The results showed a statistically significant increase in total white blood cell, eosinophil and neutrophil counts, tracheal contractility, Gata3 expression and prototypical histopathology of asthma. Along with these conditions, we found that the number of lymphocytes was decreased and expression of Tbx21 diminished in sensitized rats compared with control animals. Monitoring of labelled tagged cells confirmed successful engraftment of transplanted cells in pulmonary tissue. Juxtaposition of Kit+ cells changed the blood leucogram closer to the control values. Kit+ cells increased the expression of Tbx21 and suppressed Gata3 (P < 0.05). In the OVA+Kit+ group, tracheal responsiveness was improved coincident with increased pulmonary regeneration. In conclusion, this study showed that intratracheal administration of bone marrow-derived Kit+ cells, but not Kit- cells, could be effective in the alleviation of asthma, presumably by the modulation of Gata3 and Tbx21.


Asunto(s)
Asma/terapia , Factor de Transcripción GATA3/metabolismo , Pulmón/fisiopatología , Trasplante de Células Madre , Proteínas de Dominio T Box/metabolismo , Animales , Células de la Médula Ósea , Recuento de Leucocitos , Masculino , Proteínas Proto-Oncogénicas c-kit , Ratas , Ratas Wistar , Tráquea
19.
Endocr Regul ; 54(2): 85-95, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597159

RESUMEN

OBJECTIVE: The vast majority of type 1 diabetes leads to a higher prevalence of reproductive system's impairments. Troxerutin has attracted much attention owing to its favorable properties, including antihyperglycemic, anti-inflammatory, and antiapoptotic effects. This investigation was proposed to evaluate whether pretreatment with troxerutin could prevent apoptosis-induced testicular disorders in prepubertal diabetic rats. METHODS: Fifty prepubertal male Wistar rats were randomly allocated into five groups: control (C), troxerutin (TX), diabetic (D), diabetic+troxerutin (DTX), and diabetic+insulin (DI). Diabetes was induced by 55 mg/kg of streptozotocin applied intraperitoneally. In TX and DTX groups, 150 mg/kg troxerutin was administered by oral gavage. Diabetic rats in DI group received 2-4 U NPH insulin subcutaneously. Troxerutin and insulin treatments were begun immediately on the day of diabetes confirmation. After 30 days, the testicular lipid peroxidation and antioxidant activity, apoptosis process, and stereology as well as serum glucose and insulin levels were assessed. RESULTS: The results showed that diabetes caused a significant increase in the blood glucose, the number of TUNEL positive cells and tubules, and the malondialdehyde level as well as a significant decrease in serum insulin level compared to controls. The stereological analysis also revealed various alterations in diabetic rats compared to controls. Troxerutin treatment improved these alterations compared to the diabetic group. CONCLUSION: Troxerutin-pretreatment may play an essential role in the management of the type-1 diabetes-induced testicular disorders by decreasing blood glucose and modulating apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hidroxietilrutósido/análogos & derivados , Hipoglucemiantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedades Testiculares/tratamiento farmacológico , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Hidroxietilrutósido/administración & dosificación , Hidroxietilrutósido/farmacología , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Masculino , Ratas , Ratas Wistar , Maduración Sexual/fisiología , Enfermedades Testiculares/etiología
20.
J Cell Biochem ; 120(7): 11965-11972, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30775806

RESUMEN

Cardiovascular diseases are the main cause of death globally. Many attempts have been done to ameliorate the pathological changes after the occurrence of myocardial infarction. Curcumin is touted as a polyphenol phytocompound with appropriate cardioprotective properties. In this study, the therapeutic effect of curcumin was investigated on acute myocardial infarction in the model of rats. Rats were classified into four groups; control, isoproterenol hydrochloride (ISO) (100 mg/kbw), curcumin (50 mg/kbw), and curcumin plus ISO treatment groups. After 9-day administration of curcumin, levels of lactate dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI) were determined. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents were measured to investigate the oxidative status in infarct rats received curcumin. By using H & E staining, tissue inflammation was performed. Masson's trichrome staining was conducted to show cardiac remodeling and collagen deposition. The number of apoptotic cells was determined by using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Data showed the serum decrease of LDH, CK, and cTnI in infarct rats after curcumin intake compared to the rats given (ISO) ( P < 0.05). Curcumin was found to reduce oxidative status by reducing SOD and MDA contents ( P < 0.05). Gross and microscopic examinations revealed that the decrease of infarct area, inflammation response and collagen deposition in rats given ISO plus curcumin ( P < 0.05). We noted the superior effect of curcumin to reduce the number of apoptotic cardiomyocytes after 9 days. Data point the cardioprotective effect of curcumin to diminish the complication of infarction by the reduction of cell necrosis and apoptosis in a rat model of experimental infarction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA