Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12808-12818, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668701

RESUMEN

The surface chemistry of colloidal semiconductor nanocrystals (QDs) profoundly influences their physical and chemical attributes. The insulating organic shell ensuring colloidal stability impedes charge transfer, thus limiting optoelectronic applications. Exchanging these ligands with shorter inorganic ones enhances charge mobility and stability, which is pivotal for using these materials as active layers for LEDs, photodetectors, and transistors. Among those, InP QDs also serve as a model for surface chemistry investigations. This study focuses on group III metal salts as inorganic ligands for InP QDs. We explored the ligand exchange mechanism when metal halide, nitrate, and perchlorate salts of group III (Al, In Ga), common Lewis acids, are used as ligands for the conductive inks. Moreover, we compared the exchange mechanism for two starting model systems: InP QDs capped with myristate and oleylamine as X- and L-type native organic ligands, respectively. We found that all metal halide, nitrate, and perchlorate salts dissolved in polar solvents (such as n-methylformamide, dimethylformamide, dimethyl sulfoxide, H2O) with various polarity formed metal-solvent complex cations [M(Solvent)6]3+ (e.g., [Al(MFA)6]3+, [Ga(MFA)6]3+, [In(MFA)6]3+), which passivated the surface of InP QDs after the removal of the initial organic ligand. All metal halide capped InP/[M(Solvent)6]3+ QDs show excellent colloidal stability in polar solvents with high dielectric constant even after 6 months in concentrations up to 74 mg/mL. Our findings demonstrate the dominance of dissociation-complexation mechanisms in polar solvents, ensuring colloidal stability. This comprehensive understanding of InP QD surface chemistry paves the way for exploring more complex QD systems such as InAs and InSb QDs.

2.
Health Care Manag Sci ; 26(2): 238-260, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37243837

RESUMEN

Surgery demand is an uncertain parameter in addressing the problem of surgery block allocations, and its typical variability should be considered to ensure the feasibility of surgical planning. We develop two models, a stochastic recourse programming model and a two-stage stochastic optimization (SO) model with incorporated risk measure terms in the objective functions to determine a planning decision that is made to allocate surgical specialties to operating rooms (ORs). Our aim is to minimize the costs associated with postponements and unscheduled demands as well as the inefficient use of OR capacity. The results of these models are compared using a case of a real-life hospital to determine which model better copes with uncertainty. We propose a novel framework to transform the SO model based on its deterministic counterpart. Three SO models are proposed with respect to the variability and infeasibility of the measures of the objective function to encode the construction of the SO framework. The analysis of the experimental results demonstrates that the SO model offers better performance under a highly volatile demand environment than the recourse model. The originality of this work lies in its use of SO transformation framework and its development of stochastic models to address the problem of surgery capacity allocation based on a real case.


Asunto(s)
Modelos Teóricos , Quirófanos , Humanos , Incertidumbre , Hospitales
3.
Inflammopharmacology ; 31(6): 3029-3036, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436523

RESUMEN

BACKGROUND: Complementary ozone therapy has been identified as a revolutionary medical technique for a number of goals and ailments. At the present, it has been shown that ozone has medicinal qualities, such as antibacterial, antifungal, and antiparasitic properties. Coronavirus (SARS-CoV-2) is quickly spread over the globe. Cytokine storms and oxidative stress seem to play a substantial role in the most of acute attacks of the disease. The aim of this research was to assess the therapeutic advantages of complementary ozone therapy on the cytokine profile and antioxidant status in COVID-19 patients. METHODS: The statistical sample of this study included two hundred patients with COVID-19. One hundred COVID-19 patients (treatment group) received 240 ml of the patient's blood and an equal volume of O2/O3 gas at a concentration of 35-50 µg/ml daily, which gradually increased in concentration, and were kept for 5-10 days and one hundred patients (control group) received standard treatment. The secretion levels of IL-6, TNF-α, IL-1ß, IL-10 cytokines, SOD, CAT and GPx were compared between control patients (standard treatment) and standard treatment plus intervention (ozone) before and after treatment. RESULTS: The findings indicated a significant decrease in the level of IL-6, TNF-α, IL-1ß in group receiving complementary ozone therapy in compared with control group. Furthermore, a significant increase was found in the level of IL-10 cytokine. Moreover, SOD, CAT and GPx levels revealed a significant increase in complementary ozone therapy group compared to control group. CONCLUSIONS: Our results revealed that complementary ozone therapy can be used as a medicinal complementary therapy to reduce and control inflammatory cytokines and oxidative stress status in patients with COVID-19 as revealed its antioxidant and anti-inflammatory effects.


Asunto(s)
COVID-19 , Ozono , Humanos , COVID-19/terapia , Antioxidantes/uso terapéutico , SARS-CoV-2 , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ozono/uso terapéutico , Citocinas , Superóxido Dismutasa
4.
Immunology ; 165(1): 44-60, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34716913

RESUMEN

Cytokines are considered vital mediators of the immune system. Down- or upregulation of these mediators is linked to several inflammatory and pathologic situations. IL-26 is referred to as an identified member of the IL-10 family and IL-20 subfamily. Due to having a unique cationic structure, IL-26 exerts diverse functions in several diseases. Since IL-26 is mainly secreted from Th17, it is primarily considered a pro-inflammatory cytokine. Upon binding to its receptor complex (IL-10R1/IL-20R2), IL-26 activates multiple signalling mediators, especially STAT1/STAT3. In cancer, IL-26 induces IL-22-producing cells, which consequently decrease cytotoxic T-cell functions and promote tumour growth through activating anti-apoptotic proteins. In hypersensitivity conditions such as rheumatoid arthritis, multiple sclerosis, psoriasis and allergic disease, this cytokine functions primarily as the disease-promoting mediator and might be considered a biomarker for disease prognosis. Although IL-26 exerts antimicrobial function in infections such as hepatitis, tuberculosis and leprosy, it has also been shown that IL-26 might be involved in the pathogenesis and exacerbation of sepsis. Besides, the involvement of IL-26 has been confirmed in other conditions, including graft-versus-host disease and chronic obstructive pulmonary disease. Therefore, due to the multifarious function of this cytokine, it is proposed that the underlying mechanism regarding IL-26 function should be elucidated. Collectively, it is hoped that the examination of IL-26 in several contexts might be promising in predicting disease prognosis and might introduce novel approaches in the treatment of various diseases.


Asunto(s)
Susceptibilidad a Enfermedades , Interleucinas/genética , Interleucinas/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Infecciones/etiología , Infecciones/metabolismo , Infecciones/patología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Interleucinas/química , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Transporte de Proteínas , Transducción de Señal , Relación Estructura-Actividad
5.
Growth Factors ; 40(5-6): 163-174, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36026559

RESUMEN

Platelet-rich blood derivatives are being nowadays increasingly used in the treatment of tendon-related pathologies as a rich source of growth factors. We sought to ascertain if local application of platelet lysate (PL) to augment rotator cuff repair ameliorates patient outcomes compared to ketorolac tromethamine treated group. A total of forty patients, with clinical diagnosis of Rotator Cuff Tendinopathy were randomized to receive sub acromial injections of PL every week for a total of 3 injections and two injection of ketorolac tromethamine once every two weeks. Subjective assessments included VAS, SPADI and shoulder range of motion were assessed at baseline and at 1 and 6 months after injection. Taking both control and PL groups, it was vividly seen that the outcomes were identical at the initial state, as well as the short-term one; whereas, when considering the 6-month period, there is a seemingly remarkable superiority in PL group in all parameters.


Asunto(s)
Plasma Rico en Plaquetas , Lesiones del Manguito de los Rotadores , Tendinopatía , Humanos , Manguito de los Rotadores , Ketorolaco Trometamina/uso terapéutico , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Tendinopatía/tratamiento farmacológico , Tendones , Resultado del Tratamiento
6.
Cancer Cell Int ; 22(1): 108, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248028

RESUMEN

Breast cancer is a severe problem worldwide due to an increase in mortality and prevalence among women. Despite early diagnostic procedures as well as advanced therapies, more investigation is required to find new treatment targets. Various factors and mechanisms, such as inflammatory conditions, can play a crucial role in cancer progression. Among them, Th17 cells are identified as effective CD4+ T cells that play an essential role in autoimmune diseases and inflammation which may be associated with anti-tumor responses. In addition, Th17 cells are one of the main factors involved in cancer, especially breast cancer via the inflammatory process. In tumor immunity, the exact mechanism of Th17 cells is not entirely understood and seems to have a dual function in tumor development. Various studies have reported that cytokines secreted by Th17 cells are in close relation to cancer stem cells and tumor microenvironment. Therefore, they play a critical role in the growth, proliferation, and invasion of tumor cells. On the other hand, most studies have reported that T cells suppress the growth of tumor cells by the induction of immune responses. In patients with breast cancer compared to normal individuals, various studies have been reported that the Th17 population dramatically increases in peripheral blood which results in cancer progression. It seems that Th17 cells by creating inflammatory conditions through the secretion of cytokines, including IL-22, IL-17, TNF-α, IL-21, and IL-6, can significantly enhance breast cancer progression. Therefore, to identify the mechanisms and factors involved in the activation and development of Th17 cells, they can provide an essential role in preventing breast cancer progression. In the present review, the role of Th17 cells in breast cancer progression and its therapeutic potential was investigated.

7.
J Drug Deliv Sci Technol ; 67: 102967, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34777586

RESUMEN

The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.

8.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33372280

RESUMEN

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina/uso terapéutico , Inmunomodulación/efectos de los fármacos , Nanopartículas/uso terapéutico , Células Th17/efectos de los fármacos , Adulto , Citocinas/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Nanopartículas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Células Th17/metabolismo
9.
J Cell Physiol ; 236(4): 2829-2839, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32926425

RESUMEN

In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-ß [TGF-ß], and IL-10), and cytokine secretion levels (TGF-ß and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.


Asunto(s)
COVID-19/inmunología , Inflamación/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Anciano , Citocinas/inmunología , Femenino , Humanos , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología
10.
J Cell Biochem ; 122(10): 1389-1412, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34160093

RESUMEN

The emergence of a new acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the cause of the 2019-nCOV disease (COVID-19), has caused a pandemic and a global health crisis. Rapid human-to-human transmission, even from asymptomatic individuals, has led to the quick spread of the virus worldwide, causing a wide range of clinical manifestations from cold-like symptoms to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan injury, and even death. Therefore, using rapid and accurate diagnostic methods to identify the virus and subsequently select appropriate and effective treatments can help improvement of patients and control the pandemic. So far, various treatment regimens along with prophylactic vaccines have been developed to manage COVID-19-infected patients. Among these, antibody-based therapies, including neutralizing antibodies (against different parts of the virus), polyclonal and monoclonal antibodies, plasma therapy, and high-dose intravenous immunoglobulin (IVIG) have shown promising outcomes in accelerating and improving the treatment process of patients, avoiding the viral spreading widely, and managing the pandemic. In the current review paper, different types and applications of therapeutic antibodies in the COVID-19 treatment are comprehensively discussed.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , Inmunoglobulinas Intravenosas/uso terapéutico , Inmunoterapia , Pandemias , SARS-CoV-2 , Humanos
11.
Cancer Sci ; 112(9): 3427-3436, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34050690

RESUMEN

Chimeric antigen receptors (CARs) have a unique facet of synthetic biology and offer a paradigm shift in personalized medicine as they can use and redirect the patient's immune cells to attack cancer cells. CAR-natural killer (NK) cells combine the targeted specificity of antigens with the subsequent intracellular signaling ability of the receptors to increase their anti-cancer functions. Importantly, CAR-NK cells can be utilized as universal cell-based therapy without requiring human leukocyte antigen (HLA) matching or earlier contact with tumor-associated antigens (TAAs). Indeed, CAR-NK cells can be adapted to recognize various antigens, hold higher proliferation capacity, and in vivo persistence, show improved infiltration into the tumors, and the ability to overcome the resistant tumor microenvironment leading to sustained cytotoxicity against tumors. Accumulating evidence from recent in vivo studies rendering CAR-NK cell anti-cancer competencies renewed the attention in the context of cancer immunotherapy, as these redirected effector cells can be used in the development of the "off-the-shelf" anti-cancer immunotherapeutic products. In the current review, we focus on the therapeutic efficacy of CAR-NK cell therapies for treating various human malignancies, including hematological malignancies and solid tumors, and will discuss the recent findings in this regard, with a special focus on animal studies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Ingeniería Genética/métodos , Vectores Genéticos , Humanos , Ratones , Receptores Quiméricos de Antígenos/genética , Resultado del Tratamiento , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Clin Immunol ; 226: 108712, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684527

RESUMEN

In the past year, an emerging disease called Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been discovered in Wuhan, China, which has become a worrying pandemic and has challenged the world health system and economy. SARS-CoV-2 enters the host cell through a specific receptor (Angiotensin-converting enzyme 2) expressed on epithelial cells of various tissues. The virus, by inducing cell apoptosis and production of pro-inflammatory cytokines, generates as cytokine storm, which is the major cause of mortality in the patients. This type of response, along with responses by other immune cell, such as alveolar macrophages and neutrophils causes extensive damage to infected tissue. Newly, a novel cell-based therapy by Mesenchymal stem cell (MSC) as well as by their exosomes has been developed for treatment of COVID-19 that yielded promising outcomes. In this review study, we discuss the characteristics and benefits of MSCs therapy as well as MSC-secreted exosome therapy in treatment of COVID-19 patients.


Asunto(s)
COVID-19/inmunología , COVID-19/terapia , Exosomas/metabolismo , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Medicina de Precisión/métodos , Linfocitos B/inmunología , COVID-19/patología , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pandemias , SARS-CoV-2/patogenicidad , Linfocitos T/inmunología , Tratamiento Farmacológico de COVID-19
13.
Immunol Cell Biol ; 99(8): 814-832, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988889

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR) is considered to be an atypical protein kinase that plays a critical role in integrating different cellular and environmental inputs in the form of growth factors, nutrients and energy and, subsequently, in regulating different cellular events, including cell metabolism, survival, homeostasis, growth and cellular differentiation. Immunologically, mTOR is a critical regulator of immune function through integrating numerous signals from the immune microenvironment, which coordinates the functions of immune cells and T cell fate decisions. The crucial role of mTOR in immune responses has been lately even more appreciated. MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNAs that act as molecular regulators involved in multiple processes during immune cells development, homeostasis, activation and effector polarization. Several studies have recently indicated that a range of miRNAs are involved in regulating the phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/AKT/mTOR) signaling pathway by targeting multiple components of this signaling pathway and modulating the expression and function of these targets. Current evidence has revealed the interplay between miRNAs and the mTOR pathway circuits in various immune cell types. The expression of individual miRNA can affect the function of mTOR signaling to determine the cell fate decisions in immune responses through coordinating immune signaling and cell metabolism. Dysregulation of the mTOR pathway/miRNAs crosstalk has been reported in cancers and various immune-related diseases. Thus, expression profiles of dysregulated miRNAs could influence the mTOR pathway, resulting in the promotion of aberrant immunity. This review summarizes the latest information regarding the reciprocal role of the mTOR signaling pathway and miRNAs in orchestrating immune responses.


Asunto(s)
MicroARNs , Diferenciación Celular , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
14.
Expert Rev Mol Med ; 23: e4, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880989

RESUMEN

Today, cancer is one of the leading causes of death worldwide. Lately, cytokine and chemokine imbalances have gained attention amongst different involved pathways in cancer development and attracted much consideration in cancer research. CXCL16, as a member of the CXC subgroup of chemokines, has been attributed to be responsible for immune cell infiltration into the tumour microenvironment. The aberrant expression of CXCL16 has been observed in various cancers. This chemokine has been shown to play a conflicting role in tumour development through inducing pro-inflammatory conditions. The infiltration of various immune and non-immune cells such as lymphocytes, cancer-associated fibroblasts and myeloid-derived suppressor cells by CXCL16 into the tumour microenvironment has complicated the tumour fate. Given this diverse role of CXCL16 in cancer, a better understanding of its function might build-up our knowledge about tumour biology. Hence, this study aimed to review the impact of CXCL16 in cancer and explored its therapeutic application. Consideration of these findings might provide opportunities to achieve novel approaches in cancer treatment and its prognosis.


Asunto(s)
Quimiocinas CXC , Neoplasias , Animales , Quimiocina CXCL16 , Quimiocinas CXC/genética , Humanos , Neoplasias/genética , Receptores CXCR6 , Receptores de Quimiocina , Receptores Depuradores , Receptores Virales , Microambiente Tumoral
15.
IUBMB Life ; 73(4): 659-669, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33625758

RESUMEN

One of the most common malignant tumors is hepatocellular carcinoma (HCC). Progression of HCC mainly results from highly complex molecular and pathological pathways. Midkine (MDK) is a growth factor that impacts viability, migration, and other cell activities. Since MDK has been involved in the inflammatory responses, it has been claimed that MDK has a crucial role in HCC. MDK acts as an anti-apoptotic factor, which mediates tumor cell viability. In addition, MDK blocks anoikis to promote metastasis. There is also evidence that MDK is involved in angiogenesis. It has been shown that the application of anti-MDK approaches might be promising in the treatment of HCC. Besides, due to the elevated expression in HCC, MDK has been proposed as a biomarker in the prognosis and diagnosis of HCC. In this review, we will discuss the role of MDK in HCC. It is hoped that the development of new strategies concerning MDK-based therapies will be promising in HCC management.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Midkina/fisiología , Animales , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Hígado/irrigación sanguínea , Hígado/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Midkina/sangre , Midkina/química , Neovascularización Patológica/metabolismo , Interferencia de ARN
16.
Cancer Cell Int ; 21(1): 158, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685452

RESUMEN

A crosstalk established between tumor microenvironment and tumor cells leads to contribution or inhibition of tumor progression. Mesenchymal stem cells (MSCs) are critical cells that fundamentally participate in modulation of the tumor microenvironment, and have been reported to be able to regulate and determine the final destination of tumor cell. Conflicting functions have been attributed to the activity of MSCs in the tumor microenvironment; they can confer a tumorigenic or anti-tumor potential to the tumor cells. Nonetheless, MSCs have been associated with a potential to modulate the tumor microenvironment in favouring the suppression of cancer cells, and promising results have been reported from the preclinical as well as clinical studies. Among the favourable behaviours of MSCs, are releasing mediators (like exosomes) and their natural migrative potential to tumor sites, allowing efficient drug delivering and, thereby, efficient targeting of migrating tumor cells. Additionally, angiogenesis of tumor tissue has been characterized as a key feature of tumors for growth and metastasis. Upon introduction of first anti-angiogenic therapy by a monoclonal antibody, attentions have been drawn toward manipulation of angiogenesis as an attractive strategy for cancer therapy. After that, a wide effort has been put on improving the approaches for cancer therapy through interfering with tumor angiogenesis. In this article, we attempted to have an overview on recent findings with respect to promising potential of MSCs in cancer therapy and had emphasis on the implementing MSCs to improve them against the suppression of angiogenesis in tumor tissue, hence, impeding the tumor progression.

17.
Cell Biol Int ; 45(7): 1498-1509, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33724614

RESUMEN

Multiple sclerosis (MS) is a common degenerative disorder of the central nervous system. The decreased frequency and dysfunction of Treg cells cause inflammation and disease progression. Ozone autohemotherapy can be used as a potential therapeutic approach to regulate the immune system responses and inflammation in MS. For this purpose, 20 relapsing-remitting multiple sclerosis patients were under treatment with ozone twice weekly for 6 months. The frequency of Treg cell, the expression levels of the Treg cell-related factors (FoxP3, IL-10, TGF-ß, miR-17, miR-27, and miR-146A), and the secretion levels of IL-10 and TGF-ß were assessed. We found a significant increase in the number of Treg cells, expression levels of FoxP3, miRNAs (miR-17 and miR-27), IL-10, and TGF-ß factors in patients after oxygen-ozone (O2 -O3 ) therapy compared to before treatment. In contrast, oxygen-ozone therapy notably decreased the expression level of miR-146a in treated patients. Interestingly, the secretion levels of both IL-10 and TGF-ß cytokines were considerably increased in both serum and supernatant of cultured peripheral blood mononuclear cells in posttreatment condition compared to pretreatment condition. According to results, oxygen-ozone therapy raised the frequency of Treg cell and its relevant factors in treated MS patients. Oxygen-ozone therapy would contribute to improving the MS patients by elevating the Treg cell responses.


Asunto(s)
Esclerosis Múltiple/terapia , Oxígeno/farmacología , Ozono/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/patología , Adulto Joven
18.
Cell Biol Int ; 45(8): 1583-1598, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33760334

RESUMEN

The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Neoplasias/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Animales , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
19.
Nanomedicine ; 34: 102384, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33771704

RESUMEN

High concentrations of adenosine and interleukin (IL)-6 in the tumor microenvironment have been identified as one of the leading causes of cancer growth. Thus, we decided to inhibit the growth of cancer cells by inhibiting the production of adenosine and IL-6 in the tumor environment at the same time. For this purpose, we used chitosan-lactate-PEG-TAT (CLP-TAT) nanoparticles (NPs) loaded with siRNA molecules against CD73, an adenosine-producing enzyme, and IL-6. Proper physicochemical properties of the produced NPs led to high cell uptake and suppression of target molecules. Administration of these NPs to tumor-bearing mice (4T1 and CT26 models) greatly reduced the size of the tumor and increased the survival of the mice, which was accompanied by an increase in anti-tumor T lymphocyte responses. These findings suggest that combination therapy using siRNA-loaded CLP-TAT NPs against CD73 and IL-6 molecules could be an effective treatment strategy against cancer that needs further study.


Asunto(s)
5'-Nucleotidasa/genética , Interleucina-6/genética , Nanopartículas/administración & dosificación , Neoplasias/patología , ARN Interferente Pequeño/administración & dosificación , Animales , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteínas Ligadas a GPI/genética , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados
20.
Nanomedicine ; 34: 102373, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667724

RESUMEN

HIF-1α and STAT3 are two of the critical factors in the growth, proliferation, and metastasis of cancer cells and play a crucial role in inhibiting anti-cancer immune responses. Therefore, we used superparamagnetic iron oxide (SPION) nanoparticles (NPs) coated with thiolated chitosan (ChT) and trimethyl chitosan (TMC) and functionalized with hyaluronate (H) and TAT peptide for delivery of siRNA molecules against STAT3 and HIF-1α to cancer cells both in vivo and in vitro. The results indicated that tumor cell transfection with siRNA-encapsulated NPs robustly inhibited proliferation and migration and induced apoptosis in tumor cells. Furthermore, simultaneous silencing of HIF-1α and STAT3 significantly repressed cancer development in two different tumor types (4T1 breast cancer and CT26 colon cancer) which were associated with upregulation of cytotoxic T lymphocytes and IFN-γ secretion. The findings suggest inhibiting the HIF-1α/STAT3 axis by SPION-TMC-ChT-TAT-H NPs as an effective way to treat cancer.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Quitosano/química , Neoplasias del Colon/patología , Ácido Hialurónico/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA