Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Cancer ; 21(1): 1316, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34879849

RESUMEN

BACKGROUND: Overcoming drug resistance is critical for increasing the survival rate of prostate cancer (PCa). Docetaxel is the first cytotoxic chemotherapeutical approved for treatment of PCa. However, 99% of PCa patients will develop resistance to docetaxel within 3 years. Understanding how resistance arises is important to increasing PCa survival. METHODS: In this study, we modeled docetaxel resistance using two PCa cell lines: DU145 and PC3. Using the Passing Attributes between Networks for Data Assimilation (PANDA) method to model transcription factor (TF) activity networks in both sensitive and resistant variants of the two cell lines. We identified edges and nodes shared by both PCa cell lines that composed a shared TF network that modeled changes which occur during acquisition of docetaxel resistance in PCa. We subjected the shared TF network to connectivity map analysis (CMAP) to identify potential drugs that could disrupt the resistant networks. We validated the candidate drug in combination with docetaxel to treat docetaxel-resistant PCa in both in vitro and in vivo models. RESULTS: In the final shared TF network, 10 TF nodes were identified as the main nodes for the development of docetaxel resistance. CMAP analysis of the shared TF network identified trichostatin A (TSA) as a candidate adjuvant to reverse docetaxel resistance. In cell lines, the addition of TSA to docetaxel enhanced cytotoxicity of docetaxel resistant PCa cells with an associated reduction of the IC50 of docetaxel on the resistant cells. In the PCa mouse model, combination of TSA and docetaxel reduced tumor growth and final weight greater than either drug alone or vehicle. CONCLUSIONS: We identified a shared TF activity network that drives docetaxel resistance in PCa. We also demonstrated a novel combination therapy to overcome this resistance. This study highlights the usage of novel application of single cell RNA-sequencing and subsequent network analyses that can reveal novel insights which have the potential to improve clinical outcomes.


Asunto(s)
Docetaxel/efectos adversos , Resistencia a Antineoplásicos/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Neoplasias de la Próstata , Factores de Transcripción , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Cell Biochem ; 120(10): 16946-16955, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31099068

RESUMEN

Notch plays a protumorigenic role in many cancers including prostate cancer (PCa). Global notch inhibition of multiple Notch family members using γ-secretase inhibitors has shown efficacy in suppressing PCa growth in murine models. However, global Notch inhibition is associated with marked toxicity due to the widespread function of many different Notch family members in normal cell physiology. Accordingly, in the current study, we explored if specific inhibition of Notch1 would effectively inhibit PCa growth in a murine model. The androgen-dependent VCaP and androgen-independent DU145 cell lines were injected subcutaneously into mice. The mice were treated with either control antibody 1B7.11, anti-Notch1 antibody (OMP-A2G1), docetaxel or the combination of OMP-A2G1 and docetaxel. Tumor growth was measured using calipers. At the end of the study, tumors were assessed for proliferative response, apoptotic response, Notch target gene expression, and DNA damage response (DDR) expression. OMP-A2G1 alone inhibited tumor growth of both PCa cell lines to a greater extent than docetaxel alone. There was no additive or synergistic effect of OMP-A2G1 and docetaxel. The primary toxicity was weight loss that was controlled with dietary supplementation. Proliferation and apoptosis were affected differentially in the two cell lines. OMP-A2G1 increased expression of the DDR gene GADD45α in VCaP cells but downregulated GADD45α in Du145 cells. Taken together, these data show that Notch1 inhibition decreases PCa xenograft growth but does so through different mechanisms in the androgen-dependent VCaP cell line vs the androgen-independent DU145 cell line. These results provide a rationale for further exploration of targeted Notch inhibition for therapy of PCa.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Daño del ADN/genética , Reparación del ADN/genética , Neoplasias de la Próstata/patología , Receptor Notch1/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Docetaxel/farmacología , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptor Notch1/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Commun ; 14(1): 5253, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644036

RESUMEN

Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the ß-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.


Asunto(s)
Neoplasias de la Próstata , Proteína Fosfatasa 2 , Humanos , Masculino , Antagonistas de Andrógenos , Leucina , Metiltransferasas , Próstata , Neoplasias de la Próstata/genética , Proteína Fosfatasa 2/genética
4.
PLoS One ; 17(4): e0267642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476843

RESUMEN

Roughly 400,000 people in the U.S. are living with bone metastases, the vast majority occurring in the spine. Metastases to the spine result in fractures, pain, paralysis, and significant health care costs. This predilection for cancer to metastasize to the bone is seen across most cancer histologies, with the greatest incidence seen in prostate, breast, and lung cancer. The molecular process involved in this predilection for axial versus appendicular skeleton is not fully understood, although it is likely that a combination of tumor and local micro-environmental factors plays a role. Immune cells are an important constituent of the bone marrow microenvironment and many of these cells have been shown to play a significant role in tumor growth and progression in soft tissue and bone disease. With this in mind, we sought to examine the differences in immune landscape between axial and appendicular bones in the normal noncancerous setting in order to obtain an understanding of these landscapes. To accomplish this, we utilized mass cytometry by time-of-flight (CyTOF) to examine differences in the immune cell landscapes between the long bone and vertebral body bone marrow from patient clinical samples and C57BL/6J mice. We demonstrate significant differences between immune populations in both murine and human marrow with a predominance of myeloid progenitor cells in the spine. Additionally, cytokine analysis revealed differences in concentrations favoring a more myeloid enriched population of cells in the vertebral body bone marrow. These differences could have clinical implications with respect to the distribution and permissive growth of bone metastases.


Asunto(s)
Neoplasias Óseas , Huesos , Animales , Médula Ósea , Neoplasias Óseas/secundario , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Columna Vertebral , Microambiente Tumoral
5.
Environ Mol Mutagen ; 59(7): 603-612, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29968395

RESUMEN

We aim to establish that accelerated aging and premature cellular senescence seen in individuals with Down syndrome is related to reduced DNA polymeraseß. We report here that primary fibroblasts from Down syndrome individuals exhibit greater SA-ß-gal staining (fourfold increase, P < 0.001), increased p16 transcript abundance (threefold increase, P < 0.01), and reduced HMGB1 nuclear localization (1.5-fold lower, P < 0.01). We also find that DNA polymerase ß expression is significantly reduced in Down syndrome primary fibroblasts (53% decline, P < 0.01). To evaluate whether DNA polymerase ß might be causative in senescence induction, we evaluated the impact of murine DNA polymerase ß nullizygosity on senescence. We find that unexposed DNA polymerase ß -null primary fibroblasts exhibit a robust increase in the number of senescent cells compared to wild-type (11-fold, P < 0.001), demonstrating that loss DNA polymerase ß is sufficient to induce senescence. We also see an additional increase in response to hydroxyurea (threefold greater than WT-HU, P < 0.05). These data demonstrate that loss of DNA polymerase ß is sufficient to induce senescence. Additionally, we report a significant induction in spontaneous DNA double strand breaks in DNA polymerase ß null MEFs (fivefold increase from wild-type, P < 0.0001). Our findings strongly suggest that DNA polymerase ß is causative in senescence induction, reasonably pointing to DNA polymerase ß as a likely factor driving the premature senescence in Down syndrome. Environ. Mol. Mutagen. 59:603-612, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Senescencia Celular , ADN Polimerasa beta/metabolismo , Animales , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Polimerasa beta/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Homocigoto , Humanos , Hidroxiurea/metabolismo , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA