Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Pharmacol ; 982: 176940, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39182545

RESUMEN

Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 µL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1ß) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.

2.
Biomater Sci ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867716

RESUMEN

The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is pivotal in orchestrating the immune response induced by nanoparticle adjuvants. Understanding the intricate mechanisms underlying the activation of NLRP3 inflammasome by these adjuvants is crucial for deciphering their immunomodulatory properties. This review explores the involvement of the NLRP3 inflammasome in mediating immune responses triggered by nanoparticle adjuvants. It delves into the signaling pathways and cellular mechanisms involved in NLRP3 activation, highlighting its significance in modulating the efficacy and safety of nanoparticle-based adjuvants. A comprehensive grasp of the interplay between NLRP3 inflammasome and nanoparticle adjuvants holds promise for optimizing vaccine design and advancing immunotherapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA