RESUMEN
Continuous release of image databases with fully or partially identical inner categories dramatically deteriorates the production of autonomous Computer-Aided Diagnostics (CAD) systems for true comprehensive medical diagnostics. The first challenge is the frequent massive bulk release of medical image databases, which often suffer from two common drawbacks: image duplication and corruption. The many subsequent releases of the same data with the same classes or categories come with no clear evidence of success in the concatenation of those identical classes among image databases. This issue stands as a stumbling block in the path of hypothesis-based experiments for the production of a single learning model that can successfully classify all of them correctly. Removing redundant data, enhancing performance, and optimizing energy resources are among the most challenging aspects. In this article, we propose a global data aggregation scale model that incorporates six image databases selected from specific global resources. The proposed valid learner is based on training all the unique patterns within any given data release, thereby creating a unique dataset hypothetically. The Hash MD5 algorithm (MD5) generates a unique hash value for each image, making it suitable for duplication removal. The T-Distributed Stochastic Neighbor Embedding (t-SNE), with a tunable perplexity parameter, can represent data dimensions. Both the Hash MD5 and t-SNE algorithms are applied recursively, producing a balanced and uniform database containing equal samples per category: normal, pneumonia, and Coronavirus Disease of 2019 (COVID-19). We evaluated the performance of all proposed data and the new automated version using the Inception V3 pre-trained model with various evaluation metrics. The performance outcome of the proposed scale model showed more respectable results than traditional data aggregation, achieving a high accuracy of 98.48%, along with high precision, recall, and F1-score. The results have been proved through a statistical t-test, yielding t-values and p-values. It's important to emphasize that all t-values are undeniably significant, and the p-values provide irrefutable evidence against the null hypothesis. Furthermore, it's noteworthy that the Final dataset outperformed all other datasets across all metric values when diagnosing various lung infections with the same factors.
Asunto(s)
COVID-19 , Neumonía , Humanos , COVID-19/diagnóstico por imagen , Rayos X , Neumonía/diagnóstico por imagen , Algoritmos , Pulmón/diagnóstico por imagenRESUMEN
In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. Conditions such as deafness and tinnitus exert a substantial impact on patients' overall quality of life, emphasizing the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utilizing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal component analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and CatBoost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompassing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications for clinical practice and care.