Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 82(14): 2571-2587.e9, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597237

RESUMEN

The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.


Asunto(s)
Poli ADP Ribosilación , Recombinasa Rad51 , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga/genética , Fosforilación , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Circulation ; 149(11): 843-859, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018467

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ferroptosis , Humanos , Ratones , Animales , Gangliósido G(M3)/metabolismo , Proteómica , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/metabolismo , Hierro , Miocitos del Músculo Liso/metabolismo , Modelos Animales de Enfermedad
4.
EMBO J ; 40(16): e107403, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34223653

RESUMEN

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/antagonistas & inhibidores , Cirrosis Hepática/prevención & control , Fibrosis Pulmonar/prevención & control , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina , Tetracloruro de Carbono , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
5.
Am J Respir Cell Mol Biol ; 70(5): 364-378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38300138

RESUMEN

Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.


Asunto(s)
Ferroptosis , Interleucina-6 , Pulmón , Poli I-C , Receptores Citoplasmáticos y Nucleares , Ferroptosis/efectos de los fármacos , Animales , Poli I-C/farmacología , Interleucina-6/metabolismo , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos
6.
Circulation ; 147(19): 1444-1460, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36987924

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion (I/R) injury causes cardiac dysfunction to myocardial cell loss and fibrosis. Prevention of cell death is important to protect cardiac function after I/R injury. The process of reperfusion can lead to multiple types of cardiomyocyte death, including necrosis, apoptosis, autophagy, and ferroptosis. However, the time point at which the various modes of cell death occur after reperfusion injury and the mechanisms underlying ferroptosis regulation in cardiomyocytes are still unclear. METHODS: Using a left anterior descending coronary artery ligation mouse model, we sought to investigate the time point at which the various modes of cell death occur after reperfusion injury. To discover the key molecules involved in cardiomyocyte ferroptosis, we performed a metabolomics study. Loss/gain-of-function approaches were used to understand the role of 15-lipoxygenase (Alox15) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) in myocardial I/R injury. RESULTS: We found that apoptosis and necrosis occurred in the early phase of I/R injury, and that ferroptosis was the predominant form of cell death during the prolonged reperfusion. Metabolomic profiling of eicosanoids revealed that Alox15 metabolites accumulated in ferroptotic cardiomyocytes. We demonstrated that Alox15 expression was specifically increased in the injured area of the left ventricle below the suture and colocalized with cardiomyocytes. Furthermore, myocardial-specific knockout of Alox15 in mice alleviated I/R injury and restored cardiac function. 15-Hydroperoxyeicosatetraenoic acid (15-HpETE), an intermediate metabolite derived from arachidonic acid by Alox15, was identified as a trigger for cardiomyocyte ferroptosis. We explored the mechanism underlying its effects and found that 15-HpETE promoted the binding of Pgc1α to the ubiquitin ligase ring finger protein 34, leading to its ubiquitin-dependent degradation. Consequently, attenuated mitochondrial biogenesis and abnormal mitochondrial morphology were observed. ML351, a specific inhibitor of Alox15, increased the protein level of Pgc1α, inhibited cardiomyocyte ferroptosis, protected the injured myocardium, and caused cardiac function recovery. CONCLUSIONS: Together, our results established that Alox15/15-HpETE-mediated cardiomyocyte ferroptosis plays an important role in prolonged I/R injury.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Ferroptosis , Daño por Reperfusión Miocárdica , Animales , Ratones , Apoptosis , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 12-Lipooxigenasa/farmacología , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/farmacología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Necrosis/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
7.
Circ Res ; 130(6): 851-867, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35176871

RESUMEN

BACKGROUND: Metabolic syndrome is related to cardiovascular diseases, which is attributed in part, to arterial stiffness; however, the mechanisms remain unclear. The present study aimed to investigate the molecular mechanisms of metabolic syndrome-induced arterial stiffness and to identify new therapeutic targets. METHODS: Arterial stiffness was induced by high-fat/high-sucrose diet in mice, which was quantified by Doppler ultrasound. Four-dimensional label-free quantitative proteomic analysis, affinity purification and mass spectrometry, and immunoprecipitation and GST (glutathione S-transferase) pull-down experiments were performed to explore the mechanism of YAP (Yes-associated protein)-mediated TGF (transforming growth factor) ß pathway activation. RESULTS: YAP protein was upregulated in the aortic tunica media of mice fed a high-fat/high-sucrose diet for 2 weeks and precedes arterial stiffness. Smooth muscle cell-specific YAP knockdown attenuated high-fat/high-sucrose diet-induced arterial stiffness and activation of TGFß-Smad2/3 signaling pathway in arteries. By contrast, Myh11CreERT2-YapTg mice exhibited exacerbated high-fat/high-sucrose diet-induced arterial stiffness and enhanced TGFß-activated Smad2/3 phosphorylation in arteries. PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) was identified as a YAP-bound phosphatase that translocates into the nucleus to dephosphorylate Smads (mothers against decapentaplegic homologs) in response to TGFß. This process was inhibited by YAP through removal of the K63-linked ubiquitin chain of PPM1B at K326. CONCLUSIONS: This study provides a new mechanism by which smooth muscle cell YAP regulates the TGFß pathway and a potential therapeutic target in metabolic syndrome-associated arterial stiffness.


Asunto(s)
Síndrome Metabólico , Rigidez Vascular , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Proteómica , Sacarosa , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Rigidez Vascular/fisiología , Proteínas Señalizadoras YAP
8.
Circ Res ; 131(9): 748-764, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36164986

RESUMEN

BACKGROUND: Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS: To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS: We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS: Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Conexina 43 , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Filaminas/metabolismo , Glutamatos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mamíferos , Ratones , Estrés Mecánico
10.
J Mol Cell Cardiol ; 162: 158-165, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547259

RESUMEN

Cells are constantly exposed to various mechanical forces, including hydrostatic pressure, cyclic stretch, fluid shear stress, and extracellular matrix stiffness. Mechanical cues can be translated into the cell-specific transcriptional process by a cellular mechanic-transducer. Evidence suggests that mechanical signals assist activated intracellular signal transduction pathways and the relative phenotypic adaptation to coordinate cell behavior and disease appropriately. The Hippo/yes-associated protein (YAP) signaling pathway is regulated in response to numerous mechanical stimuli. It plays an important role in the mechanotransduction mechanism, which converts mechanical forces to cascades of molecular signaling to modulate gene expression. This review summarizes the recent findings relevant to the Hippo/YAP pathway-based mechanotransduction in cell behavior and maintaining blood vessels, as well as cardiovascular disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Mecanotransducción Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Homeostasis , Transducción de Señal/genética , Proteínas Señalizadoras YAP
11.
Circ Res ; 127(8): 1074-1090, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32673515

RESUMEN

RATIONALE: Atherosclerosis preferentially occurs at specific sites of the vasculature where endothelial cells (ECs) are exposed to disturbed blood flow. Translocation of integrin α5 to lipid rafts promotes integrin activation and ligation, which is critical for oscillatory shear stress (OSS)-induced EC activation. However, the underlying mechanism of OSS promoted integrin α5 lipid raft translocation has remained largely unknown. OBJECTIVE: The objective of this study was to specify the mechanotransduction mechanism of OSS-induced integrin α5 translocation and subsequent EC activation. METHODS AND RESULTS: Mass spectrometry studies identified endothelial ANXA2 (annexin A2) as a potential carrier allowing integrin α5ß1 to traffic in response to OSS. Interference by siRNA of AnxA2 in ECs greatly decreased OSS-induced integrin α5ß1 translocation to lipid rafts, EC activation, and monocyte adhesion. Pharmacological and genetic inhibition of PTP1B (protein tyrosine phosphatase 1B) blunted OSS-induced integrin α5ß1 activation, which is dependent on Piezo1-mediated calcium influx in ECs. Furthermore, ANXA2 was identified as a direct substrate of activated PTP1B by mass spectrometry. Using bioluminescence resonance energy transfer assay, PTP1B-dephosphorylated ANXA2 at Y24 was found to lead to conformational freedom of the C-terminal core domain from the N-terminal domain of ANXA2. Immunoprecipitation assays showed that this unmasked ANXA2-C-terminal core domain specifically binds to an integrin α5 nonconserved cytoplasmic domain but not ß1. Importantly, ectopic lentiviral overexpression of an ANXA2Y24F mutant increased and shRNA against Ptp1B decreased integrin α5ß1 ligation, inflammatory signaling, and progression of plaques at atheroprone sites in apolipoprotein E (ApoE)-/- mice. However, the antiatherosclerotic effect of Ptp1B shRNA was abolished in AnxA2-/-ApoE-/- mice. CONCLUSIONS: Our data elucidate a novel endothelial mechanotransduction molecular mechanism linking atheroprone flow and activation of integrin α5ß1, thereby identifying a class of potential therapeutic targets for atherosclerosis. Graphic Abstract: An graphic abstract is available for this article.


Asunto(s)
Anexina A2/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Microdominios de Membrana/metabolismo , Animales , Anexina A2/genética , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Integrina alfa5/genética , Integrina alfa5beta1/genética , Integrinas , Canales Iónicos/metabolismo , Masculino , Mecanotransducción Celular , Microdominios de Membrana/patología , Ratones Noqueados para ApoE , Placa Aterosclerótica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Flujo Sanguíneo Regional , Estrés Mecánico , Células THP-1
12.
Nature ; 540(7634): 579-582, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-27926730

RESUMEN

The Yorkie homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1), effectors of the Hippo pathway, have been identified as mediators for mechanical stimuli. However, the role of YAP/TAZ in haemodynamics-induced mechanotransduction and pathogenesis of atherosclerosis remains unclear. Here we show that endothelial YAP/TAZ activity is regulated by different patterns of blood flow, and YAP/TAZ inhibition suppresses inflammation and retards atherogenesis. Atheroprone-disturbed flow increases whereas atheroprotective unidirectional shear stress inhibits YAP/TAZ activity. Unidirectional shear stress activates integrin and promotes integrin-Gα13 interaction, leading to RhoA inhibition and YAP phosphorylation and suppression. YAP/TAZ inhibition suppresses JNK signalling and downregulates pro-inflammatory genes expression, thereby reducing monocyte attachment and infiltration. In vivo endothelial-specific YAP overexpression exacerbates, while CRISPR/Cas9-mediated Yap knockdown in endothelium retards, plaque formation in ApoE-/- mice. We also show several existing anti-atherosclerotic agents such as statins inhibit YAP/TAZ transactivation. On the other hand, simvastatin fails to suppress constitutively active YAP/TAZ-induced pro-inflammatory gene expression in endothelial cells, indicating that YAP/TAZ inhibition could contribute to the anti-inflammatory effect of simvastatin. Furthermore, activation of integrin by oral administration of MnCl2 reduces plaque formation. Taken together, our results indicate that integrin-Gα13-RhoA-YAP pathway holds promise as a novel drug target against atherosclerosis.

13.
Chemistry ; 26(18): 4063-4069, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-31621137

RESUMEN

Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85 Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85 Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER ) to achieve a current density (J) of 10 mA cm-2 and a high ORR potential of 0.84 V vs. RHE (EJ=-1, ORR ) to reach -1 mA cm-2 . Thus, the potential between EJ=10, OER and EJ=-1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85 Se and CNFs. Furthermore, this Co0.85 Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.

14.
Circ Res ; 123(11): e35-e47, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571460

RESUMEN

RATIONALE: The mechanisms driving atherothrombotic risk in individuals with JAK2 V617F ( Jak2 VF) positive clonal hematopoiesis or myeloproliferative neoplasms are poorly understood. OBJECTIVE: The goal of this study was to assess atherosclerosis and underlying mechanisms in hypercholesterolemic mice with hematopoietic Jak2 VF expression. METHODS AND RESULTS: Irradiated low-density lipoprotein receptor knockout ( Ldlr-/-) mice were transplanted with bone marrow from wild-type or Jak2 VF mice and fed a high-fat high-cholesterol Western diet. Hematopoietic functions and atherosclerosis were characterized. After 7 weeks of Western diet, Jak2 VF mice showed increased atherosclerosis. Early atherosclerotic lesions showed increased neutrophil adhesion and content, correlating with lesion size. After 12 weeks of Western diet, Jak2 VF lesions showed increased complexity, with larger necrotic cores, defective efferocytosis, prominent iron deposition, and costaining of erythrocytes and macrophages, suggesting erythrophagocytosis. Jak2 VF erythrocytes were more susceptible to phagocytosis by wild-type macrophages and showed decreased surface expression of CD47, a "don't-eat-me" signal. Human JAK2VF erythrocytes were also more susceptible to erythrophagocytosis. Jak2 VF macrophages displayed increased expression and production of proinflammatory cytokines and chemokines, prominent inflammasome activation, increased p38 MAPK (mitogen-activated protein kinase) signaling, and reduced levels of MerTK (c-Mer tyrosine kinase), a key molecule mediating efferocytosis. Increased erythrophagocytosis also suppressed efferocytosis. CONCLUSIONS: Hematopoietic Jak2 VF expression promotes early lesion formation and increased complexity in advanced atherosclerosis. In addition to increasing hematopoiesis and neutrophil infiltration in early lesions, Jak2 VF caused cellular defects in erythrocytes and macrophages, leading to increased erythrophagocytosis but defective efferocytosis. These changes promote accumulation of iron in plaques and increased necrotic core formation which, together with exacerbated proinflammatory responses, likely contribute to plaque instability.


Asunto(s)
Aterosclerosis/genética , Eritrocitos/metabolismo , Janus Quinasa 2/genética , Macrófagos/metabolismo , Fagocitosis , Adulto , Anciano , Animales , Aterosclerosis/sangre , Aterosclerosis/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Citocinas/genética , Citocinas/metabolismo , Femenino , Hematopoyesis , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neutrófilos/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Circ Res ; 122(4): 591-605, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29298775

RESUMEN

RATIONALE: Angiogenesis is a complex process regulating endothelial cell (EC) functions. Emerging lines of evidence support that YAP (Yes-associated protein) plays an important role in regulating the angiogenic activity of ECs. OBJECTIVE: The objective of this study was to specify the effect of EC YAP on angiogenesis and its underlying mechanisms. METHOD AND RESULTS: In ECs, vascular endothelial growth factor reduced YAP phosphorylation time and dose dependently and increased its nuclear accumulation. Using Tie2Cre-mediated YAP transgenic mice, we found that YAP promoted angiogenesis in the postnatal retina and tumor tissues. Mass spectrometry revealed signal transducer and activator of transcription 3 (STAT3) as a potential binding partner of YAP in ECs. Western blot and immunoprecipitation assays indicated that binding with YAP prolonged interleukin 6-induced STAT3 nuclear accumulation by blocking chromosomal maintenance 1-mediated STAT3 nuclear export without affecting its phosphorylation. Moreover, angiopoietin-2 expression induced by STAT3 was enhanced by YAP overexpression in ECs. Finally, a selective STAT3 inhibitor or angiopoietin-2 blockage partly attenuated retinal angiogenesis in Tie2Cre-mediated YAP transgenic mice. CONCLUSIONS: YAP binding sustained STAT3 in the nucleus to enhance the latter's transcriptional activity and promote angiogenesis via regulation of angiopoietin-2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neovascularización Fisiológica , Fosfoproteínas/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Proteínas de Ciclo Celular , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Señalizadoras YAP
16.
Clin Exp Pharmacol Physiol ; 47(7): 1134-1144, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32068900

RESUMEN

Glycerophospholipids (GPs) and sphingolipids (SPs) are important lipid components in the body and play biological functions. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are important nutrients, and their supplements are commonly used for preventing some diseases. However, the effect of n-3 PUFAs on the human glycerophospholipidome and sphingolipidome is unclear. We used targeted lipidomics to study the GP and SP profile of healthy individuals after supplementation with n-3 PUFAs for 3, 7, 14 and 21 days. Fuzzy c-means clustering was used to cluster the lipid species into six classes reflecting different changed-content patterns after n-3 PUFA supplementation. Among the species with significantly changed content, lysophospholipids were the most sensitive; their content started to increase on day 3. The content of phosphatidylserines increased at a later stage. The content of most of the phosphatidylcholines and alkylphosphatidylcholines decreased on day 21. A correlation network analysis of lipid species suggested that some enzymes involved in the metabolism of lysophospholipids and phosphatidylserines were regulated by n-3 PUFAs. Levels of creatine kinase-MB (CK-MB), urea, glucose, triglycerides and total bilirubin were altered by n-3 PUFA at 21 days. Correlation analysis revealed that the level of CK-MB was negatively correlated with those of species in lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine and phosphatidylserine classes, which were increased by n-3 PUFA supplementation. With the analysis in this work, we demonstrated the regular pattern of n-3 PUFAs on GP and SP metabolism, which provides a pharmacological basis for n-3 PUFAs for clinical application.


Asunto(s)
Suplementos Dietéticos/análisis , Ácidos Grasos Omega-3/farmacología , Lipidómica , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino
17.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G527-G538, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789748

RESUMEN

Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg·kg-1·day-1 for the animal model and 1 µM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-α (PPAR-α), as evidenced by elevated ß-oxidation of fatty acids and the expression of PPAR-α target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-α activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-α. Of note, 11,12-EET ligand dependently activated PPAR-α. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-α was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.


Asunto(s)
Inhibidores Enzimáticos/farmacocinética , Epóxido Hidrolasas , Ácidos Grasos/metabolismo , Hígado Graso , Hiperhomocisteinemia , PPAR alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/enzimología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba
18.
Anal Chem ; 91(5): 3221-3226, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30721620

RESUMEN

Phosphotyrosine (pY) serves as a docking site for the recognition proteins containing pY-binding (pYB) modules, such as the SH2 domain, to mediate cell signal transduction. Thus, it is vital to profile these binding proteins for understanding of signal regulation. However, identification of pYB proteins remains a significant challenge due to their low abundance and typically weak and transient interactions with pY sites. Herein, we designed and prepared a pY-peptide photoaffinity probe for the robust and specific enrichment and identification of its binding proteins. Using SHC1-pY317 as a paradigm, we showed that the developed probe enables to capture target protein with high selectivity and remarkable specificity even in a complex context. Notably, we expanded the strategy to a combinatorial pY-peptide-based photoaffinity probe by using combinatorial peptide ligand library (CPLL) technique and identified 24 SH2 domain proteins, which presents a deeper profiling of pYB proteins than previous reports using affinity probes. Moreover, the method can be used to mine putative pYB proteins and confirmed PKN2 as a selective binder to pY, expanding the repertoire of known domain proteins. Our approach provides a general strategy for rapid and robust interrogating pYB proteins and will promote the understanding of the signal transduction mechanism.


Asunto(s)
Marcadores de Afinidad/química , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , Fosfotirosina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rayos Ultravioleta , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Biblioteca de Péptidos , Péptidos/química , Fosfotirosina/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Dominios Homologos src
19.
FASEB J ; 32(12): 6525-6536, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30495987

RESUMEN

Endothelial progenitor cell (EPC) dysfunction contributes to diabetes-induced delay in endothelium repair after vessel injury, prominently associated with diabetic cardiovascular complications such as neointima formation. ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux to HDL, which may favorably affect EPC function. However, whether ABCG1 improves EPC function, especially in diabetes, remains unknown. Here we investigated the role of ABCG1 in EPCs by using Tie2-mediated ABCG1 transgenic (Tie2- ABCG1Tg) mice. Mice were injected with streptozotocin to induce diabetes mellitus. As compared with wild-type (WT) mice, in Tie2- ABCG1Tg mice, diabetes-impaired EPC migration and tube formation were reversed. In vitro gain-of-function and loss-of-function studies further revealed that ABCG1-overexpressing EPCs showed increased migration and tube formation and differentiation via the Lck/Yes-related novel protein tyrosine kinase /Akt/endothelial NO synthase pathway by enhancing cellular cholesterol efflux. Finally, type 1 and type 2 diabetic mouse models with arterial injury were intravenously injected with labeled EPCs from WT or Tie2- ABCG1Tg mice. Re-endothelialization in diabetic mice was improved to a greater extent by injection of ABCG1-overexpressing than WT EPCs. Our study demonstrated that ABCG1 in EPCs improved repair after vascular injury in diabetes by increasing EPC function such as migration, tube formation and differentiation, and subsequent re-endothelialization. ABCG1 might be a promising therapeutic target for diabetes-associated vascular diseases.-Shi, Y., Lv, X., Liu, Y., Li, B., Liu, M., Yan, M., Liu, Y., Li, Q., Zhang, X., He, S., Zhu, M., He, J., Zhu, Y., Zhu, Y., Ai, D. Elevating ATP-binding cassette transporter G1 improves re-endothelialization function of endothelial progenitor cells via Lyn/Akt/eNOS in diabetic mice.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Células Progenitoras Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Familia-src Quinasas/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Experimental , Endotelio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neointima/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología
20.
Biochem Biophys Res Commun ; 496(4): 1276-1283, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29408756

RESUMEN

Diabetic retinopathy (DR) is the most frequent microvascular complications of diabetes and the leading cause of blindness in adults worldwide. Non-proliferative DR (NPDR) is the first stage of DR but currently has few recommended intervention. Eicosanoids play important roles in maintaining vessel homeostasis. However, the functions of eicosanoids in NPDR are still unknown. In this study, we investigated the eicosanoids profile difference in plasma between type 2 diabetes with NPDR or not. A total of 50 patients with type 2 diabetes were recruited and divided into non-DR (NDR) group and NPDR group based on fundus photographs. The eicosanoids profiles in plasma were determined by LC-MS/MS. Adhesion and transwell assay were used to detect the adhesion and migration effects of metabolites on primary bovine retinal pericyte cells (BRPC), respectively. Streptomycin (STZ)-induced diabetic mouse model was used to test the protective effects of selected metabolites according to retinal immunofluorescence staining and fluorescence confocal microscopy. Prostaglandin 2α (PGF2α) was decreased significantly in NPDR group compared to NDR group and negatively correlated with NPDR. In vitro, PGF2α was found to accelerate adhesion and migration by activating prostaglandin F receptor (FP receptor) and subsequent increasing RhoA activity in primary bovine retinal pericyte. Administration of PGF2α analogue diminished the damage on retinal capillary in an STZ-induced diabetic mouse model. Our results suggested that PGF2α may be a protective factor in the progression of NPDR in T2D patients. The protective mechanism of PGF2α was to increase pericyte mobility through FP receptor/RhoA pathway.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Retinopatía Diabética/sangre , Dinoprost/sangre , Eicosanoides/sangre , Metaboloma , Animales , Biomarcadores/sangre , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA