Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Renal Physiol ; 327(1): F171-F183, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779751

RESUMEN

Sepsis-associated acute kidney injury (SA-AKI) is a key contributor to the life-threatening sequelae attributed to sepsis. Mechanistically, SA-AKI is a consequence of unabated myeloid cell activation and oxidative stress that induces tubular injury. Iron mediates inflammatory pathways directly and through regulating the expression of myeloid-derived ferritin, an iron storage protein comprising ferritin light (FtL) and ferritin heavy chain (FtH) subunits. Previous work revealed that myeloid FtH deletion leads to a compensatory increase in intracellular and circulating FtL and is associated with amelioration of SA-AKI. We designed this study to test the hypothesis that loss of myeloid FtL and subsequently, circulating FtL will exacerbate the sepsis-induced inflammatory response and worsen SA-AKI. We generated a novel myeloid-specific FtL knockout mouse (FtLLysM-/-) and induced sepsis via cecal ligation and puncture or lipopolysaccharide endotoxemia. As expected, serum ferritin levels were significantly lower in the knockout mice, suggesting that myeloid cells dominantly contribute to circulating ferritin. Interestingly, although sepsis induction led to a marked production of pro- and anti-inflammatory cytokines, there was no statistical difference between the genotypes. There was a similar loss of kidney function, as evidenced by a rise in serum creatinine and cystatin C and renal injury identified by expression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Finally, RNA sequencing revealed upregulation of pathways for cell cycle arrest and autophagy postsepsis, but no significant differences were observed between genotypes, including in key genes associated with ferroptosis, an iron-mediated form of cell death. The loss of FtL did not impact sepsis-mediated activation of NF-κB or HIF-1a signaling, key inflammatory pathways associated with dysregulated host response. Taken together, while FtL overexpression was shown to be protective against sepsis, the loss of FtL did not influence sepsis pathogenesis.NEW & NOTEWORTHY Hyperferritinemia in sepsis is often associated with a proinflammatory phenotype and poor prognosis. We previously showed the myeloid deletion of FtH results in a compensatory increase in FtL and is associated with reduced circulating cytokines and decreased rates of SA-AKI in animal sepsis models. Here, we show that myeloid deletion of FtL does not impact the severity of SA-AKI following CLP or LPS, suggesting that FtH plays the predominant role in propagating myeloid-induced proinflammatory pathways.


Asunto(s)
Lesión Renal Aguda , Apoferritinas , Ratones Noqueados , Sepsis , Animales , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Sepsis/metabolismo , Sepsis/complicaciones , Sepsis/genética , Apoferritinas/genética , Apoferritinas/metabolismo , Células Mieloides/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo
2.
Drug Chem Toxicol ; 45(3): 1355-1363, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33078650

RESUMEN

Tempol (4-hydroxy tempo), a pleiotropic antioxidant is reported to afford protection against cisplatin (CP)-induced nephrotoxicity. However, molecular mechanisms of action of tempol in improving the renal function in CP-induced nephrotoxicity are not fully understood. We investigated the attenuating effect of tempol against CP-induced alterations in kidney injury molecule-1 (KIM-1) and aquaporins (AQPs) in mice. Tempol (100 mg/kg, po) pretreatment with CP (20 mg/kg ip) showed restoration in renal function markers including electrolytes. CP treatment upregulated mRNA expression of KIM-1 and downregulated AQP and arginine vasopressin (AVP) expression which was attenuated by tempol. Immunoblotting analysis revealed that CP-induced alterations in KIM-1 and AQP expression were restored by tempol. Immunofluorocense study also showed restorative effect of tempol on the expression of AQP2 in CP-treated mice. In conclusion, this study provides experimental evidence that tempol resolved urinary concentration defect by the restoration of AQP, AVP and KIM-1 levels indicating a potential use of tempol in ameliorating the AKI in cancer patients under the treatment with CP.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Acuaporina 2/metabolismo , Cisplatino/toxicidad , Óxidos N-Cíclicos , Humanos , Riñón , Ratones , Marcadores de Spin
4.
Mol Neurobiol ; 61(8): 5071-5082, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38159199

RESUMEN

Protein aggregation is invariably associated with the inflammation as a factor in Alzheimer's disease (AD). We investigated the interaction between downstream factors of endoplasmic reticulum (ER) stress pathway and inflammation, with implications in cognitive impairment in AD. Amyloid-ß (Aß)(1-42) was administered by bilateral intracerebroventricular (icv) injection in the brain of adult male Wistar rats to experimentally develop AD. The cognitive impairment was assessed by measuring behavioral parameters such as Morris water maze and novel object recognition tests. Levels of pro-inflammatory cytokines such as interleukin (IL)-1ß and tumor necrosis factor (TNF)-α and anti-inflammatory cytokines IL-4 and IL-10 were measured by the enzyme-linked immunosorbent assay (ELISA) in different rat brain regions. Inflammatory marker proteins such as cyclo-oxygenase (COX)-2 and phosphorylation of nuclear factor kappa B (NF-КB) (p65) were measured by the western blotting. Gene expression of ER stress downstream factors such as ATF-4, CHOP, and GADD-34 was analyzed by qRT-PCR. Histological studies were performed to check Aß accumulation and neuronal degeneration. Integrated stress response inhibitor (ISRIB) was used to confirm the specific role of ER stress-mediated inflammation in cognitive impairment. Administration of Aß(1-42) resulted in alteration in levels of inflammatory cytokines, inflammatory proteins, and mRNA levels of ER stress downstream factors. ISRIB treatment resulted in attenuation of Aß(1-42)-induced ER stress, inflammation, neurodegeneration, and cognitive impairment in rats. These results indicate that ER stress-mediated inflammation potentiates the cognitive impairment in AD. An understanding of cascade of events, interaction of ER stress which was a hallmark of the present investigation together with inflammation and modulation of downstream signalling factors could serve as potent biomarkers to study AD progression.


Asunto(s)
Factor de Transcripción Activador 4 , Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Enfermedades Neuroinflamatorias , Ratas Wistar , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Regulación hacia Abajo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Factor de Transcripción Activador 4/metabolismo , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo , Ratas , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Fragmentos de Péptidos
5.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37147964

RESUMEN

Aims: Non-small cell lung cancer (NSCLC) is one of the aggressive tumors mostly diagnosed in the advanced stage. Therapeutic failure and drug resistance pose a major problem in NSCLC treatment primarily due to alterations in autophagy and loss of apoptosis. Therefore, the present study aimed to investigate the importance of the second mitochondria-derived activator of caspase mimetic BV6 and autophagy inhibitor chloroquine (CQ) on the regulation of apoptosis and autophagy, respectively. Subjects and Methods: Study was conducted on NCI-H23 and NCI-H522 cell lines to evaluate the effect of BV6 and CQ on the transcription and translation level of LC3-II, caspase-3, and caspase-9 genes by quantitative real-time-polymerase chain reaction and western blotting techniques. Results: In NCI-H23 cell line, BV6 and CQ treatments showed increased mRNA and protein expression of caspase-3, and caspase-9 compared to its untreated counterpart. BV6 and CQ treatments also caused downregulation of LC3-II protein expression compared to its counterpart. In NCI-H522 cell line, BV6 treatment showed a significantly increased expression of caspase-3 and caspase-9 mRNA and protein expression levels whereas BV6 treatment downregulated the expression level of LC3-II protein. A similar pattern was also observed in CQ treatment when compared with the respective controls. Both BV6 and CQ modulated in vitro expression of caspases and LC3-II which have critical regulatory roles in apoptosis and autophagy, respectively. Conclusions: Our findings suggest that BV6 and CQ could be promising candidates in NSCLC treatment and there is a need to explore them in vivo and in clinical applications.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cloroquina/farmacología , Cloroquina/uso terapéutico , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Apoptosis , Caspasas/metabolismo , Autofagia/genética , ARN Mensajero
6.
J Cancer Res Ther ; 19(7): 1753-1759, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376274

RESUMEN

AIMS: Cisplatin (cis-diamminedichloroplatinum(II), CP) is a platinum-based anticancer drug widely used in the treatment of solid malignancies. However, its side effects, particularly nephrotoxicity, are limiting factors in its clinic use. Rosmarinic acid (RA), a natural antioxidant compound, is reported to attenuate oxidative stress and associated pathophysiological outcomes. Our study aimed to explore the protective effect of RA against CP-induced acute kidney injury (AKI). MATERIALS AND METHODS: We investigated the effect of RA at the dose of 100 mg/kg on AKI induced by CP (20 mg/kg) in mice. Various parameters of nephrotoxicity such as levels of serum electrolytes, albumin, and globulin were measured using standardized methods. Besides, a specific biomarker of damage to proximal tubular cells, kidney injury molecule-1 (Kim-1), was measured in the serum by ELISA. mRNA expression of Kim-1 and a transmembrane transporter, copper transporter 1 (Ctr1), was analyzed by quantitative reverse transcriptase-polymerase chain reaction. CTR1 expression was also analyzed by western blot technique. RESULTS: RA treatment restored the downregulated CTR1 , a renal transmembrane transporter in CP-treated mice. It was accompanied by a reduction in the level of serum albumin and globulin. Serum electrolytes such as Na+, K+, and Ca2+ in CP-treated mice were found to be restored with RA treatment. Moreover, RA also significantly downregulated the increased expression of nephrotoxicity biomarker KIM-1. CONCLUSIONS: Overall, RA proved to be an effective nephroprotective compound which afforded protection at cellular and subcellular levels with an appreciable modulatory effect on a transmembrane transporter.


Asunto(s)
Lesión Renal Aguda , Transportador de Cobre 1 , Globulinas , Ácido Rosmarínico , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Biomarcadores , Cisplatino/efectos adversos , Transportador de Cobre 1/metabolismo , Electrólitos , Ácido Rosmarínico/farmacología
7.
ACS Chem Neurosci ; 13(8): 1342-1354, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385256

RESUMEN

Epilepsy is a relatively complicated neurological disorder that results in seizures. The use of resveratrol in treating seizures has been reported in recent studies. However, the low bioavailability of resveratrol and the difficulty of reaching the targeted location in the brain reduce its efficacy considerably. The side effects due to the higher concentration of drugs are another matter of concern. The purpose of the present study is to enhance the antiepileptic potential of resveratrol by delivering it to the brain's targeted location by encapsulating it in glutathione-coated collagen nanoparticles. The collagen nanoparticles increase the bioavailability of resveratrol, while the transport of resveratrol to its target location in the brain is facilitated by glutathione. By encapsulating resveratrol in glutathione-coated collagen nanoparticles, the concentration also substantially decreases. Resveratrol encapsulated in synthesized nanoparticles is referred to as nanoresveratrol. In the present study, nanoresveratrol effectiveness was studied through PTZ-induced seizures (PTZ-IS) and the increasing current electroshock (ICES) test. The efficacy of nanoresveratrol was further established using biochemical analysis, histopathological examinations, ELISA and real-time-PCR tests, and immunohistochemistry examination of the hippocampus of mice. Hence, this study is unique in the sense that it synthesized nanoresveratrol by using glutathione-coated collagen nanoparticles, followed by its application to treating seizures. On the basis of the study results, nanoresveratrol was found to be effective in preventing cognitive impairment in the mice and controlling epilepsy seizures to a greater extent than resveratrol. The proposed nanoformulation also reduces the concentration of resveratrol considerably. The present study results show that even 0.4 mg/kg of nanoresveratrol outperforms 40 mg/kg of resveratrol.


Asunto(s)
Epilepsia , Proteína HMGB1 , Nanopartículas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Colágeno/efectos adversos , Epilepsia/tratamiento farmacológico , Glutatión , Hipocampo , Ratones , Pentilenotetrazol/farmacología , Resveratrol/farmacología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Receptor Toll-Like 4
8.
Environ Toxicol Pharmacol ; 89: 103780, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864161

RESUMEN

Phthalate esters such as di-butyl phthalate (DBP) and di-ethyl hexyl phthalate (DEHP) used in personal care and consumer products and medical devices have potential to affect human health. We studied the effect of DBP and DEHP on critical enzymes of glucocorticoid biosynthesis pathway in the adrenal gland and pro-inflammatory cytokines in the serum in male Wistar rats. DEHP and DBP treatment altered the mRNA expression of enzymes of glucocorticoid biosynthesis pathway accompanied by a reduction in glucocorticoid production and elevation in the level of glucocorticoid regulated pro-inflammatory cytokines indicating a cascading effect of phthalates. The analysis of PPI (protein - protein interaction) network involving Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) of enzymes through STRING database revealed that all the proteins have the maximum level of interaction with the selected number of proteins. The STRING database analysis together with in vivo data indicates the potential effects of phthalates on various targets of steroidogenesis pathway with a global biological impact.


Asunto(s)
Dibutil Ftalato/toxicidad , Dietilhexil Ftalato/toxicidad , Mapas de Interacción de Proteínas , ARN Mensajero/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Animales , Citocinas , Glucocorticoides/biosíntesis , Inflamación , Masculino , Plastificantes/toxicidad , ARN Mensajero/genética , Ratas Wistar
9.
Sci Rep ; 12(1): 1313, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079027

RESUMEN

Cisplatin (CP) is a well-known anticancer drug used to effectively treat various kinds of solid tumors. CP causes acute kidney injury (AKI) and unfortunately, there is no therapeutic approach in hand to prevent AKI. Several signaling pathways are responsible for inducing AKI which leads to inflammation in proximal convoluted tubule cells in the kidney. Furthermore, the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome is involved in the CP-induced AKI. In this study, we investigated therapeutic effects of rosmarinic acid (RA) against inflammation-induced AKI. RA was orally administered at the dose of 100 mg/kg for two consecutive days after 24 h of a single injection of CP at the dose of 20 mg/kg administered intraperitoneally in Swiss albino male mice. Treatment of RA inhibited the activation of NLRP3 signaling pathway by blocking the activated caspase-1 and downstream signal molecules such as IL-1ß and IL18. CP activated HMGB1-TLR4/MyD88 axis was also found to be downregulated with the RA treatment. Activation of nuclear factor-κB and elevated protein expression of cyclooxygenase-2 (COX-2) were also found to be downregulated in RA-treated animals. Alteration of early tubular injury biomarker, kidney injury molecule-1 (KIM-1), was found to be subsided in RA-treated mice. RA has been earlier reported for antioxidant and anti-inflammatory properties. Our findings show that blocking a critical step of inflammasome signaling pathway by RA treatment can be a novel and beneficial approach to prevent the CP-induced AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Cinamatos/administración & dosificación , Depsidos/administración & dosificación , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Resultado del Tratamiento , Ácido Rosmarínico
10.
Front Med (Lausanne) ; 9: 894521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160140

RESUMEN

Acute kidney injury (AKI) is a serious complication of rhabdomyolysis that significantly impacts survival. Myoglobin released from the damaged muscle accumulates in the kidney, causing heme iron-mediated oxidative stress, tubular cell death, and inflammation. In response to injury, myeloid cells, specifically neutrophils and macrophages, infiltrate the kidneys, and mediate response to injury. Ferritin, comprised of ferritin light chain and ferritin heavy chain (FtH), is vital for intracellular iron handling. Given the dominant role of macrophages and heme-iron burden in the pathogenesis of rhabdomyolysis, we studied the functional role of myeloid FtH in rhabdomyolysis-induced AKI and subsequent fibrosis. Using two models of rhabdomyolysis induced AKI, we found that during the acute phase, myeloid FtH deletion did not impact rhabdomyolysis-induced kidney injury, cell death or cell proliferation, suggesting that tubular heme burden is the dominant injury mechanism. We also determined that, while the kidney architecture was markedly improved after 28 days, tubular casts persisted in the kidneys, suggesting sustained damage or incomplete recovery. We further showed that rhabdomyolysis resulted in an abundance of disparate intra-renal immune cell populations, such that myeloid populations dominated during the acute phase and lymphoid populations dominated in the chronic phase. Fibrotic remodeling was induced in both genotypes at 7 days post-injury but continued to progress only in wild-type mice. This was accompanied by an increase in expression of pro-fibrogenic and immunomodulatory proteins, such as transforming growth factor-ß, S100A8, and tumor necrosis factor-α. Taken together, we found that while the initial injury response to heme burden was similar, myeloid FtH deficiency was associated with lesser interstitial fibrosis. Future studies are warranted to determine whether this differential fibrotic remodeling will render these animals more susceptible to a second AKI insult or progress to chronic kidney disease at an accelerated pace.

11.
Oncol Res Treat ; 44(10): 530-537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34515193

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have been observed to exhibit altered expression patterns in chronic myeloid leukemia (CML). Therefore, this study was aimed to evaluate the clinical importance of miR-126 and miR-122 expression in concert to imatinib response in CML patients. METHODS: The present study included 100 CML and 100 healthy subjects. The expression of the 2 miRNAs was performed using TaqMan probe chemistry, and snU6 was used as internal control. RESULTS: The expression of miR-126 and miR-122 was downregulated in CML patients, with a mean fold change ± SD 0.20 ± 0.33 and 0.22 ± 0.37, respectively. While the expression of both miRNAs was analysed before and after imatinib treatment, it was observed that the expression levels of both were increased after imatinib treatment by 26.25-fold (5.33 against 0.20) and 13.95-fold (3.07 against 0.22) and the increase was statistically significant (p < 0.0001 and p < 0.0001, respectively). The expression of miR-126 was not conclusive when compared in different clinical stages of the CML disease as it showed a decreased expression in patients with accelerated phase compared to chronic phase (mean fold change = 0.03 and 0.27, respectively), but patients with chronic phase and blastic phase had comparable expression (mean fold change = 0.27 and 0.24, respectively). We also observed an increased expression of both miRNAs after imatinib therapy in each clinical phase. CONCLUSION: The study concludes that expression of miR-126 and miR-122 increases after imatinib treatment in CML patients and that miR-126 defines the good responders of imatinib therapy.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , MicroARNs/genética
12.
Int Immunopharmacol ; 101(Pt A): 108287, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731689

RESUMEN

Resveratrol has been found to exert protective effects in neurological disorders, including epilepsy. However, its poor bioavailability and difficulty in reaching the brain's targeted location reduce resveratrol's efficacy substantially. The side effects due to the higher concentration of drugs are another matter of concern. The objective of the present study is to propose solutions to these issues by encapsulating resveratrol in glutathione-coated collagen nanoparticles' core. The collagen nanoparticles increase the resveratrol's bioavailability, and glutathione helps in the passage of the encapsulated resveratrol to the target location in the brain. The concentration also substantially reduces due to resveratrol's encapsulation in glutathione-coated collagen nanoparticles. The encapsulated resveratrol is termed nanoresveratrol. The effectiveness of nanoresveratrol on epilepsy seizures was evaluated through histopathological examinations, ELISA tests, and qRT-PCR tests on the hippocampus of the kindled mice. The novelty of the present study thus lies in (i) the synthesis of nanoresveratrol using glutathione-coated collagen nanoparticles and (ii) the application of synthesized nanoresveratrol in the treatment of epilepsy. The study's outcome shows that nanoresveratrol has a favorable impact in reducing cognitive impairment in kindled mice, and it is more effective in controlling epilepsy seizures than resveratrol. The p-values of all the nanoresveratrol-given groups of mice (compared with the diseased group) were substantially smaller (∼10-4 to 10-2) than the significance level (0.05), indicating that the nanoresveratrol-given groups are significantly different from the diseased group, i.e., the nanoresveratrol has a significant effect on the mice. The concentration of resveratrol also decreases substantially in the proposed nanoformulation. It was observed that even 0.4 mg/kg of nanoformulation of resveratrol is performing better than 40 mg/kg of resveratrol.


Asunto(s)
Antioxidantes/administración & dosificación , Disfunción Cognitiva/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Resveratrol/administración & dosificación , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Colágeno/química , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Epilepsia/patología , Glutatión/química , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Pentilenotetrazol/administración & dosificación , Pentilenotetrazol/toxicidad
13.
Brain Res Bull ; 165: 108-117, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011197

RESUMEN

Amyloid-ß (Aß) accumulation in the brain is a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been implicated in aetiology of neurodegenerative disorders. We studied the involvement of ER stress in Aß-induced neuronal degeneration in rat brain to correlate it with cellular and molecular modifications in Aß-induced Alzheimer's like neuropathological process. Aß (1-42) (5 µg) was administered by bilateral intracerebroventricular (icv) injection in the brain of adult male Wistar rats. Acetylcholinesterase (AChE) activity and histological alterations were observed in different brain regions. ER stress-associated proteins- glucose regulated protein-78 (GRP78), eukaryotic translation initiation factor-2α (eIF2α) and growth arrest and DNA damage-inducible protein-153 (GADD153), neuronal marker- microtubule associated protein-2 (MAP-2) and microglial protein- ionized calcium binding adaptor molecule-1 (Iba-1) were measured by western blot. Reduced glutathione (GSH), nitrite level and levels of caspase-12 and caspase-3 were also measured. ER stress inhibitor, salubrinal (1 mg/kg, intraperitoneally, ip) was used to assess the specific role of ER stress. Aß (1-42)-induced increase in AChE activity, GRP78 and GADD protein levels, dephosphorylation of eIF2-α and caspase-12 and caspase-3 levels and decrease in GSH and MAP-2 levels were attenuated by salubrinal. Increase in Iba-1 protein and nitrite levels after Aß (1-42) administration were partially attenuated by salubrinal. Aß (1-42)-induced histological alterations were correlated with findings of ER stress. Results of present study implicate ER stress as a potential molecular mechanism in Aß-induced Alzheimer's like neuropathology which could serve as surrogate biomarker for study of AD progression and efficacy of therapeutic interventions for AD management.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Glutatión/metabolismo , Proteínas de Choque Térmico/metabolismo , Masculino , Neuronas/patología , Nitritos/metabolismo , Estrés Oxidativo/fisiología , Fosforilación , Ratas , Ratas Wistar
14.
Toxicology ; 428: 152299, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31574244

RESUMEN

Bisphenol A (BPA) is a ubiquitously distributed endocrine disrupting chemical (EDC). BPA exposure in humans has been a matter of concern due to its increased application in the products of day to day use. BPA has been reported to cause toxicity in almost all the vital organ systems even at a very low dose levels. It crosses the blood brain barrier and causes neurotoxicity. We studied the effect of BPA on the cerebral cortex of C57BL/6J mice and examined whether BPA exposure alters the expression of axonal and myelin structural proteins. Male mice were dosed orally to 40 µg and 400 µg BPA/kg body weight for 60 days. BPA exposure resulted in memory loss, muscle coordination deficits and allodynia. BPA exposure also caused degeneration of immature and mature oligodendrocytes as evaluated by decreased mRNA levels of 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), nestin, myelin basic protein (MBP) and myelin-associated glycoprotein-1 (MAG-1) genes revealing myelin related pathology. It was observed that subchronic BPA exposure caused neuroinflammation through deregulation of inflammatory cytokines mRNA and protein expression which further resulted into neurotoxicity through axonal as well as myelin degeneration in the brain. BPA also caused increased oxidative stress in the brain. Our study indicates long-term subchronic low dose exposure to BPA has the potential to cause axonal degeneration and demyelination in the oligodendrocytes and neurons which may have implications in neurological and neuropsychological disorders including multiple sclerosis (MS), neuromyelitis optica and others.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Síndromes de Neurotoxicidad , Fenoles/toxicidad , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , Animales , Ataxia/inducido químicamente , Ataxia/genética , Ataxia/metabolismo , Axones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína Básica de Mielina/genética , Vaina de Mielina/efectos de los fármacos , Glicoproteína Asociada a Mielina/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Tacto
15.
Asian Pac J Cancer Prev ; 19(9): 2561-2568, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30256056

RESUMEN

Background/objective: HCC is a multistep process starting from chronic hepatitis that progress through cirrhosis to HCC. MicroRNA expression level was found to be deregulated in HCC. To find out whether the expression level of miR-34a and miR-183 was deregulated in HCC compared to controls without HCC. Methods: Real time quantitative PCR was done to find out the miRNA expression level in terms of Ct value followed by statistical analysis. Results: Over-expression of miR-183 and under-expression of miR-34a in HCC was detected. All changes in expression level of miR-34a and miR-183 were found to be due to HCC compared to controls without HCC. So both miR-34a and miR-183 were suitable to differentiate HCC from Cirrhosis and chronic hepatitis with an efficient diagnostic power of sensitivity, specificity and expression level. But they might not have any role in patients' survival. Conclusion: miR- 34a and miR-183 might be considered as potential markers of HCC screening molecule in addition to other approved panel of marker. Our study warrants further expression level study.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Neoplasias Hepáticas/sangre , MicroARNs/sangre , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA