Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 125(1): 127-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112285

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Insulina , Ligandos
2.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686490

RESUMEN

IGF1R is pursued as a therapeutic target because of its abnormal expression in various cancers. Recently, we reported the presence of a putative allosteric inhibitor binding pocket in IGF1R that could be exploited for developing novel anti-cancer agents. In this study, we examined the role of nine highly conserved residues surrounding this binding pocket, with the aim of screening compound libraries in order to develop small-molecule allosteric inhibitors of IGF1R. We generated GFP fusion constructs of these mutants to analyze their impact on subcellular localization, kinase activity and downstream signaling of IGF1R. K1055H and E1056G were seen to completely abrogate the kinase activity of IGF1R, whereas R1064K and L1065A were seen to significantly reduce IGF1R kinase activity. During molecular dynamics analysis, various structural and conformational changes were observed in different conserved regions of mutant proteins, particularly in the activation loop, compromising the kinase activity of IGF1R. These results show that a stretch of four discontinuous residues within this newly identified binding pocket is critical for the kinase activity and structural integrity of IGF1R. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aminoácidos , Receptor IGF Tipo 1 , Aminoácidos/metabolismo , Línea Celular Tumoral , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
3.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727835

RESUMEN

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Asunto(s)
Biodegradación Ambiental , Ácidos Ftálicos , Sphingomonadaceae , Ácidos Ftálicos/metabolismo , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Dibutil Ftalato/metabolismo , Plastificantes/metabolismo , Cromatografía Líquida de Alta Presión , Hidroxibenzoatos/metabolismo
4.
Physiol Plant ; 176(2): e14290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634341

RESUMEN

In the present study, we analyzed GA3 (gibberellin)-treated sugarcane samples at the transcriptomic level to elucidate the differential expression of genes that influence sucrose accumulation. Previous research has suggested that GA3 application can potentially delay sink saturation by enhancing sink strength and demand, enabling the accommodation of more sucrose. To investigate the potential role of GA-induced modification of sink capacity in promoting higher sucrose accumulation, we sought to unravel the differential expression of transcripts and analyze their functional annotation. Several genes homologous to the sugar-phosphate/phosphate translocator, UTP-glucose-1-phosphate uridylyltransferase, and V-ATPases (vacuolar-type H+ ATPase) were identified as potentially associated with the increased sucrose content observed. A differentially expressed transcript was found to be identical to the mRNA of an unknown protein. Homology-based bioinformatics analysis suggested it to be a hydrolase enzyme, which could potentially act as a stimulator of sucrose buildup. The database of differentially expressed transcripts obtained in this study under the influence of GA3 represents a valuable addition to the sugarcane transcriptomics and functional genomics knowledge base.


Asunto(s)
Giberelinas , Saccharum , Giberelinas/metabolismo , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Fosfatos
5.
Biochem Genet ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773043

RESUMEN

In this study, we compared the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) among the lineages of human pathogenic Cryptococcus gattii using an in-silico approach to gain a deeper understanding of the structure and evolution of their genomes. C. gattii isolate MF34 showed the highest RA and RD of SSRs in both the genomic and transcriptomic sequences, followed by isolate WM276. In both the genomic (50%) and transcriptomic (65%) sequences, trinucleotide SSRs were the most common SSR class. A motif conservation study found that the isolates had stronger conservation (56.1%) of motifs, with isolate IND107 having the most (5.7%) unique motifs. We discovered the presence of SSRs in genes that are directly or indirectly associated with disease using gene enrichment analysis. Isolate-specific unique motifs identified in this study could be utilized as molecular probes for isolate identification. To improve genetic resources among C. gattii isolates, 6499 primers were developed. These genomic resources developed in this study could help with diversity analysis and the development of isolate-specific markers.

6.
J Cell Biochem ; 124(2): 205-220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36502516

RESUMEN

Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Ligandos , Perfilación de la Expresión Génica , Proteína A6 de Unión a Calcio de la Familia S100/genética , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Proteínas de Ciclo Celular/genética
7.
J Mol Recognit ; 36(7): e3021, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092713

RESUMEN

Visceral leishmaniasis (VL) is caused by Leishmania donovani (Ld), and most cases occur in Brazil, East Africa, and India. The treatment for VL is limited and has many adverse effects. The development of safer and more efficacious drugs is urgently needed. Drug repurposing is one of the best processes to repurpose existing drugs. Ornithine decarboxylase (ODC) is an important target against L. donovani in the polyamine biosynthesis pathway. In this study, we have modeled the 3D structure of ODC and performed high-throughput virtual screening of 8630 ZINC database ligands against Leishmania donovani ornithine decarboxylase (Ld ODC), selecting 45 ligands based on their high binding score. It is further validated through molecular docking simulation and the selection of the top two lead molecules (ceftaroline fosamil and rimegepant) for Molecular Dynamics (MD) simulation, Density functional theory (DFT), and molecular mechanics generalized born surface area (MMGBSA) analysis. The results showed that the binding affinities of ceftaroline fosamil, and rimegepant are, respectively, -10.719 and 10.159 kcal/mol. The docking complexes of the two lead compounds, ceftaroline fosamil, and rimegepant, with the target ODC, were found stable during molecular dynamics simulations. Furthermore, the analysis of MMGBSA revealed that these compounds had a high binding free energy. The DFT analysis showed that the top lead molecules were more reactive than the standard drug (pentamidine). In-silico findings demonstrated that ceftaroline fosamil, and rimegepant might be recognized as potent antagonists against ODC for the treatment of VL.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Humanos , Inhibidores de la Ornitina Descarboxilasa/química , Inhibidores de la Ornitina Descarboxilasa/farmacología , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Ornitina Descarboxilasa/química , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/farmacología , Ligandos , Leishmania donovani/metabolismo , Ceftarolina
8.
Arch Microbiol ; 206(1): 46, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153595

RESUMEN

We examined literature on Mycobacterium tuberculosis (Mtb) subsequent to its genome release, spanning years 1999-2020. We employed scientometric mapping, entity mining, visualization techniques, and PubMed and PubTator databases. Most popular keywords, most active research groups, and growth in quantity of publications were determined. By gathering annotations from the PubTator, we determined direction of research in the areas of drug hypersensitivity, drug resistance (AMR), and drug-related side effects. Additionally, we examined the patterns in research on Mtb metabolism and various forms of tuberculosis, including skin, brain, pulmonary, extrapulmonary, and latent tuberculosis. We discovered that 2011 had the highest annual growth rate of publications, at 19.94%. The USA leads the world in publications with 18,038, followed by China with 14,441, and India with 12,158 publications. Studies on isoniazid and rifampicin resistance showed an enormous increase. Non-tuberculous mycobacteria also been the subject of more research in effort to better understand Mtb physiology and as model organisms. Researchers also looked at co-infections like leprosy, hepatitis, plasmodium, HIV, and other opportunistic infections. Host perspectives like immune response, hypoxia, and reactive oxygen species, as well as comorbidities like arthritis, cancer, diabetes, and kidney disease etc. were also looked at. Symptomatic aspects like fever, coughing, and weight loss were also investigated. Vitamin D has gained popularity as a supplement during illness recovery, however, the interest of researchers declined off late. We delineated dominant researchers, journals, institutions, and leading nations globally, which is crucial for aligning ongoing and evolving landscape of TB research efforts. Recognising the dominant patterns offers important information about the areas of focus for current research, allowing biomedical scientists, clinicians, and organizations to strategically coordinate their efforts with the changing priorities in the field of tuberculosis research.


Asunto(s)
Mycobacterium tuberculosis , Infecciones Oportunistas , Tuberculosis , Humanos , Tuberculosis/tratamiento farmacológico , Isoniazida , Mycobacterium tuberculosis/genética , Descubrimiento de Drogas
9.
Arch Microbiol ; 206(1): 25, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108905

RESUMEN

Plant extracts have been used to treat microbiological diseases for centuries. This study examined plant triterpenoids tormentic acid (TA) and 23-hydroxycorosolic acid (HCA) for their antibiofilm effects on Staphylococcus aureus strains (MTCC-96 and MTCC-7405). Biofilms are bacterial colonies bound by a matrix of polysaccharides, proteins, and DNA, primarily impacting healthcare. As a result, ongoing research is being conducted worldwide to control and prevent biofilm formation. Our research showed that TA and HCA inhibit S. aureus planktonic growth by depolarizing the bacterial membrane. In addition, zone of inhibition studies confirmed their effectiveness, and crystal violet staining and biofilm protein quantification confirmed their ability to prevent biofilm formation. TA and HCA exhibited substantial reductions in biofilm formation for S. aureus (MTCC-96) by 54.85% and 48.6% and for S. aureus (MTCC-7405) by 47.07% and 56.01%, respectively. Exopolysaccharide levels in S. aureus biofilm reduced significantly by TA (25 µg/mL) and HCA (20 µg/mL). Microscopy, bacterial motility, and protease quantification studies revealed their ability to reduce motility and pathogenicity. Furthermore, TA and HCA treatment reduced the mRNA expression of S. aureus virulence genes. In silico analysis depicted a high binding affinity of triterpenoids for biofilm and quorum-sensing associated proteins in S. aureus, with TA having the strongest affinity for TarO (- 7.8 kcal/mol) and HCA for AgrA (- 7.6 kcal/mol). TA and HCA treatment reduced bacterial load in S. aureus-infected peritoneal macrophages and RAW264.7 cells. Our research indicates that TA and HCA can effectively combat S. aureus by inhibiting its growth and suppressing biofilm formation.


Asunto(s)
Staphylococcus aureus , Triterpenos , Triterpenos/farmacología , Carga Bacteriana , Biopelículas
10.
Extremophiles ; 27(2): 20, 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37481762

RESUMEN

A significant portion of the earth has a salty environment, and the literature on bacterial survival mechanisms in salty environments is limited. During molecular evolution, halophiles increase acidic amino acid residues on their protein surfaces which leads to a negatively charged surface potential that helps them to maintain the protein integrity and protect them from denaturation by competing with salt ions. Through protein family analysis, we have investigated the molecular-level adaptive features of DNA polymerase III's catalytic subunit (alpha) and its structure-function relationship. This study throws light on the novel understanding of halophilic bacterial replication and the molecular basis of salt adaptation. Comparisons of the amino acid contents and electronegativity of halophilic and mesophilic bacterial proteins revealed adaptations that allow halophilic bacteria to thrive in high salt concentrations. A significantly lower isoelectric point of halophilic bacterial proteins indicates the acidic nature. Also, an abundance of disordered regions in halophiles suggests the requirement of the salt ions that play a crucial role in their stable protein folding. Despite having similar topology, mesophilic and halophilic proteins, a set of very prominent molecular modifications was observed in the alpha subunit of halophiles.


Asunto(s)
ADN Polimerasa III , Cloruro de Sodio , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Evolución Molecular , Iones
11.
Curr Microbiol ; 81(1): 15, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006416

RESUMEN

The global impact of COVID-19 has heightened concerns about emerging viral infections, among which monkeypox (MPOX) has become a significant public health threat. To address this, our study employs a comprehensive approach using three statistical techniques: Distribution fitting, ARIMA modeling, and Random Forest machine learning to analyze and predict the spread of MPOX in the top ten countries with high infection rates. We aim to provide a detailed understanding of the disease dynamics and model theoretical distributions using country-specific datasets to accurately assess and forecast the disease's transmission. The data from the considered countries are fitted into ARIMA models to determine the best time series regression model. Additionally, we employ the random forest machine learning approach to predict the future behavior of the disease. Evaluating the Root Mean Square Errors (RMSE) for both models, we find that the random forest outperforms ARIMA in six countries, while ARIMA performs better in the remaining four countries. Based on these findings, robust policy-making should consider the best fitted model for each country to effectively manage and respond to the ongoing public health threat posed by monkeypox. The integration of multiple modeling techniques enhances our understanding of the disease dynamics and aids in devising more informed strategies for containment and control.


Asunto(s)
COVID-19 , Mpox , Humanos , Mpox/epidemiología , Factores de Tiempo , COVID-19/epidemiología , Aprendizaje Automático , Predicción
12.
Proteins ; 90(2): 566-578, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601761

RESUMEN

Currently, multidrug-resistant tuberculosis (MDR-TB) is a public health crisis and a major health security threat globally. In Mycobacterium tuberculosis (Mtb), major facilitator superfamily (MFS) is the largest group of secondary active transporters. Along with the transport of their natural substrates, MFS proteins were involved in a drug efflux mechanism that ultimately lead to resistance against available anti-TB drugs in Mtb. In the present study, the three-dimensional structure model of an MFS protein, Rv1634, a probable multidrug transporter from Mtb, was generated using homology modeling. The protein structure model was found in inward-open conformation having 14 transmembrane helices. In addition, a central transport channel was deduced across the protein, and a single binding pocket was identified halfway through the central cavity by structural alignment with the homologous protein structures. Further, Rv1634 protein was studied based on the differential structural behavior of apo and ligand-bound forms. All the protein systems were inserted into a phospholipid bilayer to characterize the conformational dynamics of the protein using molecular dynamics (MD) simulations. Detailed analysis of the MD trajectories showed the diverse substrate specificity of the binding pocket for the antibiotics that caused differential movement in the ciprofloxacin and norfloxacin, to which Mtb strains have now become resistant. The expulsion of the drugs outside the bacterial cell occurs through the alternating-access mechanism of N and C-terminal domains, which is intriguing and essential to the understanding the drug resistance mechanism in pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis/metabolismo , Tuberculosis/virología , Humanos , Estructura Secundaria de Proteína
13.
Genetica ; 150(1): 67-75, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35048216

RESUMEN

Next-generation sequencing has allowed us to explore new methods, where comparative and population genomics can be used simultaneously. Keeping this in mind, we surveyed and analyzed the frequency and distribution of microsatellites in the Indian gharial (Gavialis gangeticus) and compared it with American alligator (Alligator mississippiensis) and saltwater crocodile (Crocodylus porosus) to enrich them with genomic resources. The Indian gharial has a low frequency, relative abundance (RA), and relative density (RD) of microsatellites as compared to other crocodilians. RA and RD were positively correlated with the GC content of genomic and transcriptomic sequences. The genomic sequences were dominated by dinucleotide repeats, whereas the transcriptomic sequences had an excess of trinucleotide repeats. Motif conservation studies among the three crocodilians revealed conservation of 69.2% of motifs. Species-specific unique motifs identified in this study could be used as molecular probes for species identification. A total of 67,311 primers were designed in all three species to enrich the crocodilians with genomic resources. The genomic resources developed in this study could accelerate diversity analysis within its individuals to design a proper mating plan to reduce inbreeding stress and further improve the species.


Asunto(s)
Caimanes y Cocodrilos , Caimanes y Cocodrilos/genética , Animales , Genoma , Genómica , Humanos , Repeticiones de Microsatélite , Especificidad de la Especie
14.
Arch Microbiol ; 204(10): 604, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069945

RESUMEN

The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Vacunas , Epítopos de Linfocito T , Humanos , Leishmania donovani/genética , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/prevención & control , Proteoma
15.
Extremophiles ; 26(2): 17, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511349

RESUMEN

Here, we analysed the genomic evolution in extremophilic bacteria using long simple sequence repeats (SSRs). Frequencies of occurrence, relative abundance (RA) and relative density (RD) of long SSRs were analysed in the genomes of extremophilic bacteria. Thermus aquaticus had the most RA and RD of long SSRs in its coding sequences (110.6 and 1408.3), followed by Rhodoferax antarcticus (77.0 and 1187.4). A positive correlation was observed between G + C content and the RA-RD of long SSRs. Geobacillus kaustophilus, Geobacillus thermoleovorans, Halothermothrix orenii, R. antarcticus, and T. aquaticus preferred trinucleotide repeats within their genomes, whereas others preferred a higher number of tetranucleotide repeats. Gene enrichment showed the presence of these long SSRs in metabolic enzyme encoding genes related to stress tolerance. To analyse the functional implications of SSR insertions, three-dimensional protein structure modelling of SSR containing diguanylate cyclase (DGC) gene encoding protein was carried out. Removal of SSR sequence led to an inappropriate folding and instability of the modelled protein structure.


Asunto(s)
Extremófilos , Bacterias/genética , Composición de Base , Extremófilos/genética , Mutación con Ganancia de Función , Repeticiones de Microsatélite
16.
Mol Divers ; 26(1): 137-156, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33438129

RESUMEN

Multidrug resistance mechanism of microorganisms towards conventional antimicrobials nowadays faces a common health problem. So, searching and development of new antibacterials are in the frontier areas of biochemistry. Functionalizations of various natural products or synthesis of compounds through molecular modeling followed by virtual screening are the ways to obtain potential leads. Chrysin is one of the plant secondary metabolites and is ubiquitously present in majority of plants. It has multi-dimensional potentiality however, with a very low bioavailability causing a very low efficacy. Very few chrysin derivatives possessing antimicrobial activity with a low anti-biofilm efficacy have been found in the literature. Thus, it has been attempted to synthesize a series of new chrysin derivatives (CDs). In this study, twenty-two new derivatives have been synthesized via its 7-OH modulation and antibiofilm activity was evaluated against a model bacterium viz. Escherichia coli MTCC 40 (Gram negative). Eleven CDs coded as 2a, 2b, 2c, 2e, 2f, 2g, 2h, 2i, 3j, 3k and 3l have been found more potent compared to chrysin (precursor of CDs) against planktonic form of E. coli. Biofilm inhibition studies indicated a noteworthy results for 2a (93.57%), 2b (92.14%), 2f (92.14%) and 3l (93.57%) compared to chrysin (33.57%). E. coli motility was also highly restricted by 2a, 2b, 2f and 3l than chrysin at their sub-inhibitory concentrations. Solubility studies indicated an extended-release of 2a, 2b, 2f and 3l in physiological systems. Relatively higher bioavailability of 2a, 2b, 2f and 3l than chrysin was revealed from the dissolution experiments and was further validated through in silico ADME-based SAR analysis. Hence, this study is more interesting in regard to antibacterial potentiality of chrysin derivatives against Escherichia coli MTCC 40 (Gram negative). Thus, this article might be useful for further design and development of new leads in the context of biofilm-associated bacterial infections.


Asunto(s)
Escherichia coli , Flavonoides , Antibacterianos/química , Biopelículas , Flavonoides/farmacología , Pruebas de Sensibilidad Microbiana
17.
Curr Microbiol ; 79(9): 286, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947199

RESUMEN

The COVID-19 pandemic has followed a wave pattern, with an increase in new cases followed by a drop. Several factors influence this pattern, including vaccination efficacy over time, human behavior, infection management measures used, emergence of novel variants of SARS-CoV-2, and the size of the vulnerable population, among others. In this study, we used three statistical approaches to analyze COVID-19 dissemination data collected from 15 November 2021 to 09 January 2022 for the prediction of further spread and to determine the behavior of the pandemic in the top 12 countries by infection incidence at that time, namely Distribution Fitting, Time Series Modeling, and Epidemiological Modeling. We fitted various theoretical distributions to data sets from different countries, yielding the best-fit distribution for the most accurate interpretation and prediction of the disease spread. Several time series models were fitted to the data of the studied countries using the expert modeler to obtain the best fitting models. Finally, we estimated the infection rates (ß), recovery rates (γ), and Basic Reproduction Numbers ([Formula: see text]) for the countries using the compartmental model SIR (Susceptible-Infectious-Recovered). Following more research on this, our findings may be validated and interpreted. Therefore, the most refined information may be used to develop the best policies for breaking the disease's chain of transmission by implementing suppressive measures such as vaccination, which will also aid in the prevention of future waves of infection.


Asunto(s)
COVID-19 , Número Básico de Reproducción , COVID-19/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética
18.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613714

RESUMEN

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.


Asunto(s)
Neoplasias , Receptor para Productos Finales de Glicación Avanzada , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Inflamación/metabolismo , Ligandos , Neoplasias/tratamiento farmacológico , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores
19.
Arch Microbiol ; 203(3): 927-939, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33084948

RESUMEN

Poor oral health has broad consequences that can be seen at personal as well as societal levels, especially in developing countries like India. We have limited information on the healthy oral cavity's inhabitant microorganisms that play a crucial role in overall oral health. In a comprehensive culture-independent approach, the bacterial composition of healthy human oral cavities was determined from a sub-population of northern India. During this study, 20 mouthwash-derived metagenomes were explored for identifying bacterial diversity using the 16S rRNA hypervariable V3 region with the MiSeq Illumina platform. On the taxonomy assignment of operational taxonomic units (OTUs), 20 assigned phyla and 162 genera were recovered among the participants. The mean relative abundance revealed that Streptococcus was the dominant genera among the participants. However, at inter-individual analysis, Neisseria and Haemophilus exhibited first-order dominance among five and three healthy individuals, respectively. Correlation studies indicate that Streptococcus shares a strong relationship with Rothia, Corynebacterium, Prevotella, and Veillonella, whereas it was negatively correlated with Neisseria, Aggregatibacter, Porphyromonas, and Fusobacteria like Gram-negative bacteria. Bacterial diversity showed insignificant differences at the level of age and gender within and between the participants. The results support several of the major findings of previous reports on the healthy oral microbiome of the Indian population, however, the present investigation further illustrates that demographic region leaves an impact on overall bacterial composition. The study will assist in a better understanding of the oral microbiome from region-specific Indian population that was otherwise highly under-represented.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbiota/genética , Boca/microbiología , Adolescente , Adulto , Bacterias/aislamiento & purificación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , Masculino , Metagenoma , Persona de Mediana Edad , ARN Ribosómico 16S/genética
20.
Extremophiles ; 25(1): 15-24, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084979

RESUMEN

Here, we have analyzed the enzyme ornithine carbamoyltransferase (OCTase) in different classes of microorganisms belonging to psychrophiles, mesophiles and thermophiles. This OCTase catalyzes the formation of citrulline from carbamoyl phosphate (CP) and ornithine (ORN) in arginine biosynthesis pathway and has certain unique adaptations to regulate metabolic pathways in extreme conditions. The tertiary structure of OCTase showed two binding domains, the CP domain and ORN-binding domain at N and C terminals, respectively. We propose general acid-base catalysis in Pseudomonas gessardii between His259 and Asp220 in which later may act as a recipient of proton in the process. The comparative docking analysis showed that substrate-binding loops have been evolved to accommodate their lifestyles across the physiological temperature range where two substrates bind on two distinct loops in psychrophiles and mesophiles, whereas both the substrates bind on a single-substrate-binding loop in thermophiles and bring down the flexibility of the active site pocket to improve its evolutionary fitness.


Asunto(s)
Carbamoil Fosfato/metabolismo , Extremófilos/enzimología , Ornitina Carbamoiltransferasa/química , Pseudomonas/enzimología , Sitios de Unión , Catálisis , Simulación del Acoplamiento Molecular , Ornitina Carbamoiltransferasa/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA