Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 19(9): e2205519, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642804

RESUMEN

Exosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Exosomas/metabolismo , Espectrometría Raman/métodos , Vesículas Extracelulares/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Línea Celular
2.
Proc Natl Acad Sci U S A ; 112(32): E4354-63, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26195743

RESUMEN

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas y Procedimientos Diagnósticos/instrumentación , Electricidad , Nanoestructuras/química , Línea Celular Tumoral , Coinfección/diagnóstico , Ambiente , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Microfluídica , Concentración Osmolar , Reproducibilidad de los Resultados , Temperatura
3.
Adv Biol (Weinh) ; 7(7): e2200327, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37300338

RESUMEN

Extracellular vesicles (EVs) are emerging as biomarker candidates for early detection of prostate cancer. Studies compare EV-microRNA (miRNA) expression in individuals with prostate cancer (PCa) with cancer-free samples for diagnostic purposes. The aim of this study is to review miRNA signatures to investigate the overlap between miRNAs enriched in PCa tissue and miRNAs enriched in EVs isolated from subjects with PCa biofluids (i.e., urine, serum, and plasma). Signatures dysregulated in EVs from PCa biofluids and tissue are potentially associated with the primary tumor site and might be more indicative of PCa at an early stage. A systematic review of EV-derived miRNAs and a reanalysis of PCa tissue miRNA sequencing data for comparison is presented. Articles in the literature are screened for validated miRNA dysregulation in PCa and compared with TCGA primary PCa tumor data using DESeq2. This resulted in 190 dysregulated miRNAs being identified. Thirty-one eligible studies are identified, indicating 39 dysregulated EV-derived miRNAs. The top ten markers identified as significantly dysregulated in the PCa tissue dataset TCGA (e.g., miR-30b-3p, miR-210-3p, miR-126-3p, and miR-196a-5p) have a significant expression change in EVs with the same directionality in one or several statistically significant results. This analysis highlights several less frequently studied miRNAs in PCa literature.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología
4.
Lab Chip ; 23(13): 2942-2958, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37314731

RESUMEN

The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Biomarcadores de Tumor/análisis , Dispositivos Laboratorio en un Chip , ADN de Neoplasias , Técnicas Analíticas Microfluídicas/métodos
5.
Biosensors (Basel) ; 13(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832064

RESUMEN

The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Autoevaluación , SARS-CoV-2 , Pruebas en el Punto de Atención
6.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174030

RESUMEN

Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.

7.
Adv Sci (Weinh) ; 9(28): e2105396, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35957519

RESUMEN

In many malaria-endemic regions, current detection tools are inadequate in diagnostic accuracy and accessibility. To meet the need for direct, phenotypic, and automated malaria parasite detection in field settings, a portable platform to process, image, and analyze whole blood to detect Plasmodium falciparum parasites, is developed. The liberated parasites from lysed red blood cells suspended in a magnetic field are accurately detected using this cellphone-interfaced, battery-operated imaging platform. A validation study is conducted at Ugandan clinics, processing 45 malaria-negative and 36 malaria-positive clinical samples without external infrastructure. Texture and morphology features are extracted from the sample images, and a random forest classifier is trained to assess infection status, achieving 100% sensitivity and 91% specificity against gold-standard measurements (microscopy and polymerase chain reaction), and limit of detection of 31 parasites per µL. This rapid and user-friendly platform enables portable parasite detection and can support malaria diagnostics, surveillance, and research in resource-constrained environments.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Eritrocitos , Malaria/diagnóstico , Malaria/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum
8.
Curr Opin Biotechnol ; 77: 102756, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930844

RESUMEN

Recent breakthroughs in biofabrication of bioasemblies, consisting of the engineered structures composed of biological or biosynthetic components into a single construct, have found a wide range of practical applications in medicine and engineering. This review presents an overview of how the bottom-up assembly of living entities could drive advances in medicine, by developing tunable biological models and more precise methods for quantifying biological events. Moreover, we delve into advances beyond biomedical applications, where bioassemblies can be manipulated as functional robots and construction materials. Finally, we address the potential challenges and opportunities in the field of engineering living bioassemblies, toward building new design principles for the next generation of bioengineering applications.


Asunto(s)
Bioingeniería , Ingeniería Biomédica , Bioingeniería/métodos
9.
Adv Mater ; 34(1): e2103646, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34623709

RESUMEN

The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.


Asunto(s)
Infecciones del Sistema Respiratorio , Virus , Humanos , Técnicas de Amplificación de Ácido Nucleico , Pandemias , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Infecciones del Sistema Respiratorio/diagnóstico
10.
ACS Nano ; 16(10): 15946-15958, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36125414

RESUMEN

Plasmonic metasurfaces consist of metal-dielectric interfaces that are excitable at background and leakage resonant modes. The sharp and plasmonic excitation profile of metal-free electrons on metasurfaces at the nanoscale can be used for practical applications in diverse fields, including optoelectronics, energy harvesting, and biosensing. Currently, Fano resonant metasurface fabrication processes for biosensor applications are costly, need clean room access, and involve limited small-scale surface areas that are not easy for accurate sample placement. Here, we leverage the large-scale active area with uniform surface patterns present on optical disc-based metasurfaces as a cost-effective method to excite asymmetric plasmonic modes, enabling tunable optical Fano resonance interfacing with a microfluidic channel for multiple target detection in the visible wavelength range. We engineered plasmonic metasurfaces for biosensing through efficient layer-by-layer surface functionalization toward real-time measurement of target binding at the molecular scale. Further, we demonstrated the quantitative detection of antibodies, proteins, and the whole viral particles of SARS-CoV-2 with a high sensitivity and specificity, even distinguishing it from similar RNA viruses such as influenza and MERS. This cost-effective plasmonic metasurface platform offers a small-scale light-manipulation system, presenting considerable potential for fast, real-time detection of SARS-CoV-2 and pathogens in resource-limited settings.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Proteínas/química , Metales
11.
ACS Nano ; 16(7): 10219-10230, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35671037

RESUMEN

Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.


Asunto(s)
Miocitos Cardíacos , Robótica , Ingeniería de Tejidos , Acústica
12.
Sci Rep ; 11(1): 5967, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727598

RESUMEN

The rapid growth and development of technology has had significant implications for healthcare, personalized medicine, and our understanding of biology. In this work, we leverage the miniaturization of electronics to realize the first demonstration of wireless detection and communication of an electronic device inside a cell. This is a significant forward step towards a vision of non-invasive, intracellular wireless platforms for single-cell analyses. We demonstrate that a 25 [Formula: see text]m wireless radio frequency identification (RFID) device can not only be taken up by a mammalian cell but can also be detected and specifically identified externally while located intracellularly. The S-parameters and power delivery efficiency of the electronic communication system is quantified before and after immersion in a biological environment; the results show distinct electrical responses for different RFID tags, allowing for classification of cells by examining the electrical output noninvasively. This versatile platform can be adapted for realization of a broad modality of sensors and actuators. This work precedes and facilitates the development of long-term intracellular real-time measurement systems for personalized medicine and furthering our understanding of intrinsic biological behaviors. It helps provide an advanced technique to better assess the long-term evolution of cellular physiology as a result of drug and disease stimuli in a way that is not feasible using current methods.


Asunto(s)
Fenómenos Fisiológicos Celulares , Transducción de Señal , Tecnología Inalámbrica , Bioingeniería/instrumentación , Bioingeniería/métodos , Células Cultivadas , Electrónica/instrumentación , Electrónica/métodos , Diseño de Equipo , Humanos , Espacio Intracelular , Miniaturización
13.
Lab Chip ; 9(15): 2224-9, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19606300

RESUMEN

Particle manipulation based on dielectrophoresis (DEP) can be a versatile and useful tool in lab-on-chip systems for a wide range of cell patterning and tissue engineering applications. Even though there are extensive reports on the use of DEP for cell patterning applications, the development of approaches that make DEP even more affordable and common place is still desirable. In this study, we present the use of interdigitated electrodes on a printed circuit board (PCB) that can be reused to manipulate and position HeLa cells and polystyrene particles over 100 microm thick glass cover slips using DEP. An open-well or a closed microfluidic channel, both made of PDMS, was placed on the glass coverslip, which was then placed directly over the PCB. An AC voltage was applied to the electrodes on the PCB to induce DEP on the particles through the thin glass coverslip. The HeLa cells patterned with DEP were subsequently grown to confirm the lack of any adverse affects from the electric fields. This alternative and reusable platform for DEP particle manipulation can provide a convenient and rapid method for prototyping a DEP-based lab-on-chip system, cost-sensitive lab-on-chip applications, and a wide range of tissue engineering applications.


Asunto(s)
Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Impresión , Electrodos , Electroforesis , Diseño de Equipo , Vidrio , Células HeLa , Humanos , Poliestirenos
14.
Biomed Microdevices ; 11(1): 135-42, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18770041

RESUMEN

Bacteriophage phi29 virus nanoparticles and its associated DNA packaging nanomotor can provide for novel possibilities towards the development of hybrid bio-nano structures. Towards the goal of interfacing the phi29 viruses and nanomotors with artificial micro and nanostructures, we fabricated nanoporous Anodic Aluminum Oxide (AAO) membranes with pore size of 70 nm and shrunk the pores to sub 40 nm diameter using atomic layer deposition (ALD) of Aluminum Oxide. We were able to capture and align particles in the anodized nanopores using two methods. Firstly, a functionalization and polishing process to chemically attach the particles in the inner surface of the pores was developed. Secondly, centrifugation of the particles was utilized to align them in the pores of the nanoporous membranes. In addition, when a mixture of empty capsids and packaged particles was centrifuged at specific speeds, it was found that the empty capsids deform and pass through 40 nm diameter pores whereas the particles packaged with DNA were mainly retained at the top surface of the nanoporous membranes. Fluorescence microscopy was used to verify the selective filtration of empty capsids through the nanoporous membranes.


Asunto(s)
Óxido de Aluminio/química , Bacteriófagos/química , Cápside/química , Membranas Artificiales , Nanopartículas/química , Bacteriófagos/ultraestructura , Cápside/ultraestructura , Nanopartículas/ultraestructura , Porosidad
15.
ACS Nano ; 13(3): 2858-2869, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30714717

RESUMEN

Nanoparticles' enhanced permeation and retention (EPR) variations due to tumor heterogeneity in naturally occurring brain tumors are commonly neglected in preclinical nanomedicine studies. Recent pathological studies have shown striking similarities between brain tumors in humans and dogs, indicating that canine brain tumors may be a valuable model to evaluate nanoparticles' EPR in this context. We recruited canine clinical cases with spontaneous brain tumors to investigate nanoparticles' EPR in different brain tumor pathologies using surface-enhanced Raman spectroscopy (SERS). We used gold nanoparticles due to their surface plasmon effect that enables their sensitive and microscopic resolution detection using the SERS technique. Raman microscopy of the resected tumors showed heterogeneous EPR of nanoparticles into oligodendrogliomas and meningiomas of different grades, without any detectable traces in necrotic parts of the tumors or normal brain. Raman observations were confirmed by scanning electron microscopy (SEM) and X-ray elemental analyses, which enabled localization of individual nanoparticles embedded in tumor tissues. Our results demonstrate nanoparticles' EPR and its variations in clinically relevant, spontaneous brain tumors. Such heterogeneities should be considered alongside routine preoperative imaging and histopathological analyses in order to accelerate clinical management of brain tumors using nanomedicine approaches.


Asunto(s)
Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico por imagen , Nanomedicina , Nanopartículas/química , Animales , Análisis Químico de la Sangre , Neoplasias Encefálicas/cirugía , Perros , Oro/química , Imagen por Resonancia Magnética , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie
16.
Lab Chip ; 8(7): 1130-6, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18584089

RESUMEN

We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.


Asunto(s)
Dispositivos Laboratorio en un Chip , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Reacción en Cadena de la Polimerasa/instrumentación , Calibración , Separación Celular/instrumentación , Conductividad Eléctrica , Vidrio/química , Listeria monocytogenes/citología , Microelectrodos , Sensibilidad y Especificidad , Silicio/química , Temperatura
17.
PLoS One ; 13(3): e0194712, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29601607

RESUMEN

Continuous monitoring of physiological parameters inside a living cell will lead to major advances in our understanding of biology and complex diseases, such as cancer. It also enables the development of new medical diagnostics and therapeutics. Progress in nanofabrication and wireless communication has opened up the potential of making a wireless chip small enough that it can be wholly inserted into a living cell. To investigate how such chips could be internalized into various types of living single cells and how this process might affect cells' physiology, we designed and fabricated a series of multilayered micron-scale tag structures with different sizes as potential RFID (Radio Frequency IDentification) cell trackers. While the present structures are test structures that do not resonate, the tags that do resonate have similar structure from device fabrication, material properties, and device size point of view. The structures are in four different sizes, the largest with the lateral dimension of 9 µm × 21 µm. The thickness for these structures is kept constant at 1.5 µm. We demonstrate successful delivery of our fabricated chips into various types of living cells, such as melanoma skin cancer, breast cancer, colon cancer and healthy/normal fibroblast skin cells. To our surprise, we observed a remarkable internalization rate difference between each cell type; the uptake rate was faster for more aggressive cancer cells than the normal/healthy cells. Cell viability before and after tag cellular internalization and persistence of the internalized tags have also been recorded over the course of five days of incubation. These results establish the foundations of the possibility of long term, wireless, intracellular physiological signal monitoring.


Asunto(s)
Fibroblastos/citología , Espacio Intracelular/metabolismo , Microtecnología/instrumentación , Dispositivo de Identificación por Radiofrecuencia , Animales , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular , Humanos , Ensayo de Materiales , Ratones
18.
Sci Transl Med ; 10(454)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111644

RESUMEN

Tuberculosis (TB) remains a public health crisis and a leading cause of infection-related death globally. Although in high demand, imaging technologies that enable rapid, specific, and nongenetic labeling of live Mycobacterium tuberculosis (Mtb) remain underdeveloped. We report a dual-targeting strategy to develop a small molecular probe (CDG-DNB3) that can fluorescently label single bacilli within 1 hour. CDG-DNB3 fluoresces upon activation of the ß-lactamase BlaC, a hydrolase naturally expressed in Mtb, and the fluorescent product is retained through covalent modification of the Mtb essential enzyme decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1). This dual-targeting probe not only discriminates live from dead Bacillus Calmette-Guérin (BCG) but also shows specificity for Mtb over other bacterial species including 43 nontuberculosis mycobacteria (NTM). In addition, CDG-DNB3 can image BCG phagocytosis in real time, as well as Mtb in patients' sputum. Together with a low-cost, self-driven microfluidic chip, we have achieved rapid labeling and automated quantification of live BCG. This labeling approach should find many potential applications for research toward TB pathogenesis, treatment efficacy assessment, and diagnosis.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Mycobacterium tuberculosis/metabolismo , Coloración y Etiquetado , Animales , Automatización , Proteínas Bacterianas/metabolismo , Recuento de Células , Colorantes Fluorescentes/química , Ratones , Microfluídica , Células RAW 264.7
19.
Nanomedicine (Lond) ; 8(2): 299-308, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23394158

RESUMEN

Biotargeted nanomedicines have captured the attention of academic and industrial scientists who have been motivated by the theoretical possibilities of the 'magic bullet' that was first conceptualized by Paul Ehrlich at the beginning of the 20th century. The Biotargeting Working Group, consisting of more than 50 pharmaceutical scientists, engineers, biologists and clinicians, has been formed as part of the National Cancer Institute's Alliance for Nanotechnology in Cancer to harness collective wisdom in order to tackle conceptual and practical challenges in developing biotargeted nanomedicines for cancer. In modern science and medicine, it is impossible for any individual to be an expert in every aspect of biology, chemistry, materials science, pharmaceutics, toxicology, chemical engineering, imaging, physiology, oncology and regulatory affairs. Drawing on the expertise of leaders from each of these disciplines, this commentary highlights six tenets of biotargeted cancer nanomedicines in order to enable the translation of basic science into clinical practice.


Asunto(s)
Nanomedicina/métodos , Neoplasias , Animales , Humanos
20.
ACS Nano ; 6(8): 6862-9, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22857784

RESUMEN

Early detection and targeted therapy are two major challenges in the battle against cancer. Novel imaging contrast agents and targeting approaches are greatly needed to improve the sensitivity and specificity of cancer theranostic agents. Here, we implemented a novel approach using a magnetic micromesh and biocompatible fluorescent magnetic nanoparticles (FMN) to magnetically enhance cancer targeting in living subjects. This approach enables magnetic targeting of systemically administered individual FMN, containing a single 8 nm superparamagnetic iron oxide core. Using a human glioblastoma mouse model, we show that nanoparticles can be magnetically retained in both the tumor neovasculature and surrounding tumor tissues. Magnetic accumulation of nanoparticles within the neovasculature was observable by fluorescence intravital microscopy in real time. Finally, we demonstrate that such magnetically enhanced cancer targeting augments the biological functions of molecules linked to the nanoparticle surface.


Asunto(s)
Colorantes Fluorescentes/química , Glioblastoma/patología , Nanopartículas de Magnetita , Microscopía Fluorescente/métodos , Nanocápsulas/química , Animales , Línea Celular Tumoral , Humanos , Campos Magnéticos , Ensayo de Materiales , Ratones , Ratones SCID , Nanocápsulas/ultraestructura , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA