Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1074: 514-36, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17105950

RESUMEN

Two well-characterized cannabinoid receptors (CBrs), CB1 and CB2, mediate the effects of cannabinoids and marijuana use, with functional evidence for other CBrs. CB1 receptors are expressed primarily in brain and peripheral tissues. For over a decade several laboratories were unable to detect CB2 receptors in brain and were known to be intensely expressed in peripheral and immune tissues and have traditionally been referred to as peripheral CB2 CBrs. We have reported the discovery and functional presence of CB2 cannabinoid receptors in mammalian brain that may be involved in depression and drug abuse and this was supported by reports of identification of neuronal CB2 receptors that are involved in emesis. We used RT-PCR, immunoblotting, hippocampal cultures, immunohistochemistry, transmission electron microscopy, and stereotaxic techniques with behavioral assays to determine the functional expression of CB2 CBrs in rat brain and mice brain exposed to chronic mild stress (CMS) or those treated with abused drugs. RT-PCR analyses supported the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. In situ hybridization revealed CB2 mRNA in cerebellar neurons of wild-type but not of CB2 knockout mice. Abundant CB2 receptor immunoreactivity (iCB2) in neuronal and glial processes was detected in brain and CB2 expression was detected in neuron-specific enolase (NSE) positive hippocampal cell cultures. The effect of direct CB2 antisense oligonucleotide injection into the brain and treatment with JWH015 in motor function and plus-maze tests also demonstrated the functional presence of CB2 cannabinoid receptors in the central nervous system (CNS). Thus, contrary to the prevailing view that CB2 CBrs are restricted to peripheral tissues and predominantly in immune cells, we demonstrated that CB2 CBrs and their gene transcripts are widely distributed in the brain. This multifocal expression of CB2 immunoreactivity in brain suggests that CB2 receptors may play broader roles in the brain than previously anticipated and may be exploited as new targets in the treatment of depression and substance abuse.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cromosomas Humanos Par 1 , Depresión/genética , Femenino , Humanos , Indoles/farmacología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Ratas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/antagonistas & inhibidores , Bazo/metabolismo , Trastornos Relacionados con Sustancias/genética , Transcripción Genética
2.
Prog Neurobiol ; 66(5): 307-44, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12015198

RESUMEN

This review presents the remarkable advances that have been achieved in marijuana (cannabinoid) research, with the discovery of specific receptors and the existence of naturally occurring cannabis-like substances in the human body and brain. The last decade has seen more rapid progress in marijuana research than any time in the thousands of years that marijuana has been used by humans, particularly in cannabinoid genomics. The cDNA and genomic sequences encoding G protein-coupled cannabinoid receptors (Cnrs) from several species have now been cloned. Endogenous cannabinoids (endocannabinoids), synthetic and hydrolyzing enzymes and transporters that define neurochemically-specific cannabinoid brain pathways have been identified. Endocannabinoid lipid signaling molecules alter activity at G protein-coupled receptors (GPCR) and possibly at anandamide-gated ion channels, such as vanilloid receptors. Availability of increasingly-specific CB1 and CB2 Cnr antagonists and of CB1 and CB2 Cnr knockout mice have increased our understanding of these cannabinoid systems and provides tantalizing evidence for even more G protein-coupled Cnrs. Initial studies of the Cnr gene structure, regulation and polymorphisms whet our appetite for more information about these interesting genes, their variants and roles in vulnerabilities to addictions and other neuropsychiatric disorders. Behavioral studies of cannabinoids document the complex interactions between rewarding and aversive effects of these drugs. Pursuing cannabinoid-related molecular, pharmacological and behavioral leads will add greatly to our understanding of endogenous brain neuromodulator systems, abused substances and potential therapeutics. This review of CB1 and CB2 Cnr genes in human and animal brain and their neurobiological effects provide a basis for many of these studies. Therefore, understanding the physiological cannabinoid control system in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.


Asunto(s)
Química Encefálica/genética , Cannabinoides/genética , Receptores de Droga/genética , Secuencia de Aminoácidos , Animales , Moduladores de Receptores de Cannabinoides , Endocannabinoides , Humanos , Datos de Secuencia Molecular , Receptores de Cannabinoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA