Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Infect Dis ; 78(4): 870-879, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37967326

RESUMEN

BACKGROUND: The rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) is a single-dose, live-attenuated, recombinant vesicular stomatitis virus vaccine indicated for the prevention of Ebola virus disease (EVD) caused by Zaire ebolavirus in individuals 12 months of age and older. METHODS: The Partnership for Research on Ebola VACcination (PREVAC) is a multicenter, phase 2, randomized, double-blind, placebo-controlled trial of 3 vaccine strategies in healthy children (ages 1-17) and adults, with projected 5 years of follow-up (NCT02876328). Using validated assays (GP-ELISA and PRNT), we measured antibody responses after 1-dose rVSVΔG-ZEBOV-GP, 2-dose rVSVΔG-ZEBOV-GP (given on Day 0 and Day 56), or placebo. Furthermore, we quantified vaccine virus shedding in a subset of children's saliva using RT-PCR. RESULTS: In total, 819 children and 783 adults were randomized to receive rVSVΔG-ZEBOV-GP (1 or 2 doses) or placebo. A single dose of rVSVΔG-ZEBOV-GP increased antibody responses by Day 28 that were sustained through Month 12. A second dose of rVSVΔG-ZEBOV-GP given on Day 56 transiently boosted antibody concentrations. In vaccinated children, GP-ELISA titers were superior to placebo and non-inferior to vaccinated adults. Vaccine virus shedding was observed in 31.7% of children, peaking by Day 7, with no shedding observed after Day 28 post-dose 1 or any time post-dose 2. CONCLUSIONS: A single dose of rVSVΔG-ZEBOV-GP induced robust antibody responses in children that was non-inferior to the responses induced in vaccinated adults. Vaccine virus shedding in children was time-limited and only observed after the first dose. Overall, these data support the use of rVSVΔG-ZEBOV-GP for the prevention of EVD in at-risk children. Clinical Trials Registration. The study is registered at ClinicalTrials.gov (NCT02876328), the Pan African Clinical Trials Registry (PACTR201712002760250), and the European Clinical Trials Register (EudraCT number: 2017-001798-18).


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Adulto , Niño , Humanos , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , Vacunas Sintéticas , Vacunación/métodos , Vacunas Atenuadas , Inmunogenicidad Vacunal
2.
Malar J ; 15: 213, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075879

RESUMEN

BACKGROUND: Targeted malaria control interventions are expected to be cost-effective. Clinical, parasitological and serological markers of malaria transmission have been used to detect malaria transmission hotspots, but few studies have examined the relationship between the different potential markers in low transmission areas. The present study reports on the relationships between clinical, parasitological, serological and entomological markers of malaria transmission in an area of low transmission intensity in Coastal Kenya. METHODS: Longitudinal data collected from 831 children aged 5-17 months, cross-sectional survey data from 800 older children and adults, and entomological survey data collected in Ganze on the Kenyan Coast were used in the present study. The spatial scan statistic test used to detect malaria transmission hotspots was based on incidence of clinical malaria episodes, prevalence of asymptomatic asexual parasites carriage detected by microscopy and polymerase chain reaction (PCR), seroprevalence of antibodies to two Plasmodium falciparum merozoite antigens (AMA1 and MSP1-19) and densities of Anopheles mosquitoes in CDC light-trap catches. RESULTS: There was considerable overlapping of hotspots by these different markers, but only weak to moderate correlation between parasitological and serological markers. PCR prevalence and seroprevalence of antibodies to AMA1 or MSP1-19 appeared to be more sensitive markers of hotspots at very low transmission intensity. CONCLUSION: These findings may support the choice of either serology or PCR as markers in the detection of malaria transmission hotspots for targeted interventions.


Asunto(s)
Anopheles/fisiología , Infecciones Asintomáticas/epidemiología , Insectos Vectores/fisiología , Malaria/epidemiología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Estudios Transversales , Humanos , Incidencia , Lactante , Kenia/epidemiología , Malaria/diagnóstico , Malaria/transmisión , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Densidad de Población , Prevalencia , Estudios Seroepidemiológicos , Adulto Joven
3.
Vaccine ; 38(4): 897-906, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31708182

RESUMEN

BACKGROUND: We assessed the safety and immunogenicity of the RTS,S/AS01 malaria vaccine in a subset of children identified as HIV-infected during a large phase III randomized controlled trial conducted in seven sub-Saharan African countries. METHODS: Infants 6-12 weeks and children 5-17 months old were randomized to receive 4 RTS,S/AS01 doses (R3R group), 3 RTS,S/AS01 doses plus 1 comparator vaccine dose (R3C group), or 4 comparator vaccine doses (C3C group) at study months 0, 1, 2 and 20. Infants and children with WHO stage III/IV HIV disease were excluded but HIV testing was not routinely performed on all participants; our analyses included children identified as HIV-infected based on medical history or clinical suspicion and confirmed by polymerase chain reaction or antibody testing. Serious adverse events (SAEs) and anti-circumsporozoite (CS) antibodies were assessed. RESULTS: Of 15459 children enrolled in the trial, at least 1953 were tested for HIV and 153 were confirmed as HIV-infected (R3R: 51; R3C: 54; C3C: 48). Among these children, SAEs were reported for 92.2% (95% CI: 81.1-97.8) in the R3R, 85.2% (72.9-93.4) in the R3C and 87.5% (74.8-95.3) in the C3C group over a median follow-up of 39.3, 39.4 and 38.3 months, respectively. Fifteen HIV-infected participants in each group (R3R: 29.4%, R3C: 27.8%, C3C: 31.3%) died during the study. No deaths were considered vaccination-related. In a matched case-control analysis, 1 month post dose 3 anti-CS geometric mean antibody concentrations were 193.3 EU/mL in RTS,S/AS01-vaccinated HIV-infected children and 491.5 EU/mL in RTS,S/AS01-vaccinated immunogenicity controls with unknown or negative HIV status (p = 0.0001). CONCLUSIONS: The safety profile of RTS,S/AS01 in HIV-infected children was comparable to that of the comparator (meningococcal or rabies) vaccines. RTS,S/AS01 was immunogenic in HIV-infected children but antibody concentrations were lower than in children with an unknown or negative HIV status. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT00866619.


Asunto(s)
Infecciones por VIH/epidemiología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Vacunación , Vacunas Sintéticas/administración & dosificación , África del Sur del Sahara , Estudios de Casos y Controles , Método Doble Ciego , Femenino , Humanos , Inmunogenicidad Vacunal , Lactante , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Masculino , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
4.
Hum Vaccin Immunother ; 15(10): 2386-2398, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31012786

RESUMEN

A phase III, double-blind, randomized, controlled trial (NCT00866619) in sub-Saharan Africa showed RTS,S/AS01 vaccine efficacy against malaria. We now present in-depth safety results from this study. 8922 children (enrolled at 5-17 months) and 6537 infants (enrolled at 6-12 weeks) were 1:1:1-randomized to receive 4 doses of RTS,S/AS01 (R3R) or non-malaria control vaccine (C3C), or 3 RTS,S/AS01 doses plus control (R3C). Aggregate safety data were reviewed by a multi-functional team. Severe malaria with Blantyre Coma Score ≤2 (cerebral malaria [CM]) and gender-specific mortality were assessed post-hoc. Serious adverse event (SAE) and fatal SAE incidences throughout the study were 24.2%-28.4% and 1.5%-2.5%, respectively across groups; 0.0%-0.3% of participants reported vaccination-related SAEs. The incidence of febrile convulsions in children was higher during the first 2-3 days post-vaccination with RTS,S/AS01 than with control vaccine, consistent with the time window of post-vaccination febrile reactions in this study (mostly the day after vaccination). A statistically significant numerical imbalance was observed for meningitis cases in children (R3R: 11, R3C: 10, C3C: 1) but not in infants. CM cases were more frequent in RTS,S/AS01-vaccinated children (R3R: 19, R3C: 24, C3C: 10) but not in infants. All-cause mortality was higher in RTS,S/AS01-vaccinated versus control girls (2.4% vs 1.3%, all ages) in our setting with low overall mortality. The observed meningitis and CM signals are considered likely chance findings, that - given their severity - warrant further evaluation in phase IV studies and WHO-led pilot implementation programs to establish the RTS,S/AS01 benefit-risk profile in real-life settings.


Asunto(s)
Esquemas de Inmunización , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/prevención & control , África del Sur del Sahara , Método Doble Ciego , Femenino , Fiebre/inducido químicamente , Humanos , Incidencia , Lactante , Vacunas contra la Malaria/inmunología , Malaria Cerebral/mortalidad , Malaria Cerebral/prevención & control , Malaria Falciparum/mortalidad , Masculino , Meningitis/inducido químicamente , Plasmodium falciparum , Convulsiones Febriles/inducido químicamente , Vacunación
5.
PLoS One ; 12(5): e0177382, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493930

RESUMEN

Reference intervals for clinical laboratory parameters are important for assessing eligibility, toxicity grading and management of adverse events in clinical trials. Nonetheless, haematological and biochemical parameters used for clinical trials in sub-Saharan Africa are typically derived from industrialized countries, or from WHO references that are not region-specific. We set out to establish community reference values for haematological and biochemical parameters amongst children aged 4 weeks to 17 months in Kilifi, Kenya. We conducted a cross sectional study nested within phase II and III trials of RTS, S malaria vaccine candidate. We analysed 10 haematological and 2 biochemical parameters from 1,070 and 423 community children without illness prior to experimental vaccine administration. Statistical analysis followed Clinical and Laboratory Standards Institute EP28-A3c guidelines. 95% reference ranges and their respective 90% confidence intervals were determined using non-parametric methods. Findings were compared with published ranges from Tanzania, Europe and The United States. We determined the reference ranges within the following age partitions: 4 weeks to <6 months, 6 months to less than <12 months, and 12 months to 17 months for the haematological parameters; and 4 weeks to 17 months for the biochemical parameters. There were no gender differences for all haematological and biochemical parameters in all age groups. Hb, MCV and platelets 95% reference ranges in infants largely overlapped with those from United States or Europe, except for the lower limit for Hb, Hct and platelets (lower); and upper limit for platelets (higher) and haematocrit(lower). Community norms for common haematological and biochemical parameters differ from developed countries. This reaffirms the need in clinical trials for locally derived reference values to detect deviation from what is usual in typical children in low and middle income countries.


Asunto(s)
Servicios de Laboratorio Clínico , Intervalos de Confianza , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Kenia , Recuento de Leucocitos , Masculino , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA