RESUMEN
Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.
Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Flavonas , Neuralgia , Ratas , Animales , Hiperalgesia/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Estreptozocina , Simulación del Acoplamiento Molecular , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/complicaciones , Analgésicos/farmacología , Ácido gamma-Aminobutírico/farmacología , Flavonas/farmacología , Flavonas/uso terapéutico , BiomarcadoresRESUMEN
A series of twenty-seven bis(acylhydrazones) were successfully synthesized with high yields through a multistep process, which entailed the esterification of hydroxyl groups, hydrazination with an excess of hydrazine hydrate, and subsequent reactions with various carbonyl moieties (aldehydes). In the final stage of synthesis, different chemical species including aromatic, heterocyclic, and aliphatic compounds were integrated into the framework. The resulting compounds were characterized using several spectroscopic techniques (1H NMR, 13C NMR, and mass spectrometry). Their anticholinesterase activities were assessed in vitro by examining their interactions with two cholinesterase enzymes: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the synthesized hits, compounds 3, 5, 6, 9-12, and 14 exhibited good to moderate inhibition of AChE. Specifically, 10 (IC50 = 26.3 ± 0.4 µM) and 11 (IC50 = 28.4 ± 0.5 µM) showed good inhibitory activity against AChE, while 9, 12, 3, and 6 exhibited significant inhibition potential against AChE with IC50 values ranging from 35.2 ± 1.1 µM to 64.4 ± 0.3 µM. On the other hand, 5 (IC50 = 22.0 ± 1.1 µM) and 27 (IC50 = 31.3 ± 1.3 µM) displayed significant, and 19 (IC50 = 92.6 ± 0.4 µM) showed moderate inhibitory potential for BChE. Notably, 5 and 27 exhibited dual inhibition of AChE and BChE, with greater potency than the standard drug galantamine. The binding patterns of these molecules within the binding cavities of AChE and BChE were anticipated by molecular docking which showed good correlation with our in vitro findings. Further structural optimization of these molecules may yield more potent AChE and BChE inhibitors.
Asunto(s)
Compuestos de Bifenilo , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Hidrazinas , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-ActividadRESUMEN
Carbonic anhydrase II (CA II) is crucial for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance. It is a pivotal druggable target which is implicated in glaucoma, renal, gastric, and pancreatic carcinomas, as well as in malignant brain tumours. Therefore, to identify new CA II (bovine) inhibitors, the current study was designed to synthesize a library of 20 new triazole-linked hydrazones (6a-t). All compounds were characterized by using spectroscopic techniques such as NMR and mass spectrometry. The in-vitro evaluation resulted in impressive inhibitory capability against CA II with IC50 values ranging from 9.10 ± 0.26-48.26 ± 1.30 µM. Among all derivatives, compounds 6a, 6b, 6d, 6k-6m, 6q, 6s and 6t exhibited potent inhibitory potential with 6t deemed as the most active inhibitor. Additionally, kinetic study of the hybrid 6t revealed concentration dependent type of inhibition with Ki value 7.24 ± 0.0086 µM. Furthermore, molecular docking of 6t correlates well with the kinetic analysis. The in-silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development.
RESUMEN
Tyrosinase inhibitors are studied in the cosmetics and pharmaceutical sectors as tyrosinase enzyme is involved in the biosynthesis and regulation of melanin, hence these inhibitors are beneficial for the management of melanogenesis and hyperpigmentation-related disorders. In the current work, a novel series of diphenyl urea derivatives containing a halo-pyridine moiety (5a-t) was synthesized via a multi-step synthesis. In vitro, tyrosinase inhibitory assay results showed that, except for two compounds, the derivatives were excellent inhibitors of human tyrosinase. The average IC50 value of the inhibitors (15.78 µM) is lower than that of kojic acid (17.3 µM) used as the reference compound, indicating that, on average, these molecules are more potent than the reference. Derivative 5a was identified as the most potent human tyrosinase inhibitor of the series, with an IC50 value of 3.5 ± 1.2 µM, approximately 5 times more potent than kojic acid. To get further insights into the nature of binding site interactions, molecular docking and molecular dynamics simulation studies were carried out. Moreover, the evaluation of in silico ADME properties showed a highly favorable profile for the synthesized compounds. These findings suggested that the further development of this class of compounds could be useful to get potent drug-like compounds that can target hyperpigmentation-related disorders.
Asunto(s)
Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Piridinas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Relación Estructura-Actividad , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Urea/farmacología , Urea/análogos & derivados , Urea/química , Urea/síntesis química , Simulación de Dinámica MolecularRESUMEN
BACKGROUND: There is a need for healthcare providers to develop life-story review interventions to enhance the mental well-being and quality of life of older adults. The primary aim of this study is to examine the effects of telling their life stories and creating a life-story book intervention on QoL, depressive symptoms, and life satisfaction in a group of older adults in Oman. METHODS: A repeated-measures randomized controlled design was conducted in Oman. A total of 75 older adults (response rate = 40.1%) were randomly assigned to the intervention (n = 38) or control (n = 37) groups. Demographic data were collected as the baseline. Depression, life satisfaction, and quality of life scores were collected from each participant at weeks 1, 2, 3, 4, and 8. RESULTS: Their average age is 67.3 ± 5.5 years (range 60-82 years). There are more women (n = 50, 66.7%) than men. Over the 8 weeks, the intervention group exhibited a notable decrease in depression (intervention: 2.5 ± 1.2 vs. control: 5.3 ± 2.1, p < .001) but an increase in life satisfaction (24.6 ± 3.1 vs. 21.9 ± 6.1, p < .001) and quality of life (physical: 76.2 ± 12.7 vs. 53.6 ± 15.5, p < .001; psychological: 76.4 ± 12.1 vs. 59.9 ± 21.5, p < .001; Social relation: 78.3 ± 11.7 vs. 61.8 ± 16.6, p < .001; environment: 70.8 ± 10.2 vs. 58.6 ± 16.1, p < .001) compared to the control group. CONCLUSION: The life-story review intervention proved effective in diminishing depression and boosting life satisfaction and quality of life among the older sample within the 8-week study. Healthcare providers can apply such interventions to improve older adults' mental health and well-being.
Asunto(s)
Depresión , Satisfacción Personal , Calidad de Vida , Humanos , Masculino , Calidad de Vida/psicología , Femenino , Anciano , Omán/epidemiología , Depresión/psicología , Depresión/terapia , Depresión/epidemiología , Anciano de 80 o más Años , Persona de Mediana EdadRESUMEN
Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.
Asunto(s)
Carbono , Nitrógeno , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Humanos , Pirimidinas/química , Pirimidinas/sangre , Pirimidinas/síntesis química , Fluorometría , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Solventes/química , Estructura MolecularRESUMEN
Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.
Asunto(s)
Cardiotónicos , Infarto del Miocardio , Fitoquímicos , Extractos Vegetales , Infarto del Miocardio/tratamiento farmacológico , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cardiotónicos/farmacología , Cardiotónicos/química , Fitoquímicos/farmacología , Fitoquímicos/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , FitoterapiaRESUMEN
Human carbonic anhydrase (hCA) plays a vital role in the development and progression of tumors in hypoxic conditions. Herein we report the hCA-II and hCA-IX activities of natural products isolated from Aloe vera (L.) Burm.f., to know their potential in tumors. These isolated compounds (1-10) displayed varying degrees of inhibition against hCA-II and hCA-IX. All the compounds showed potent activity against hCA-IX with IC50 values in the range of 2.9 - 29.1 µM. While for hCA-II, compounds 1, 2, 5-10 exhibited IC50 in the range of 4.7 - 23.4 µM. The most effective hCA IX and II inhibitors, 2 and 5, were chosen for in vitro mechanism studies, revealing that they are competitive inhibitors. Furthermore, when tested for their cytotoxic effect on BJ (normal) cell line, all the compounds showed no cytotoxic behavior, while on Prostate cancer cells (PC-3), compounds 1, 3, 5, 7, and 9 exhibited significant antiproliferative activity. Molecular docking was also conducted within the hCA IX and hCA-II active sites to observe their binding capability. Compounds 1, 5, 7, and 9 were active against both isozymes of hCA and in the PC-3 cell line, therefore these are the best choices for further in vivo studies..
RESUMEN
Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (inâ vitro). In the series, six compounds 12 (IC50=10.19±0.16â µM), 11 (IC50=15.05±1.11â µM), 10 (IC50=17.01±1.23â µM), 9 (IC50=17.22±0.81â µM), 13 (IC50=19.31±0.18â µM), and 14 (IC50=19.62±0.21â µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24â µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.
Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Hidrazonas , Simulación del Acoplamiento Molecular , Bases de Schiff , Terfenadina , Ureasa , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Terfenadina/análogos & derivados , Terfenadina/química , Terfenadina/metabolismo , Terfenadina/farmacología , Terfenadina/síntesis química , Teoría Funcional de la Densidad , Estructura Molecular , Relación Estructura-Actividad , Canavalia/enzimologíaRESUMEN
In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.
Asunto(s)
Acarbosa , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Relación Estructura-ActividadRESUMEN
Diabetes mellitus (DM) has prevailed as a chronic health condition and has become a serious global health issue due to its numerous consequences and high prevalence. We have synthesized a series of hydrazone derivatives and tested their antidiabetic potential by inhibiting the essential carbohydrate catabolic enzyme, "α-glucosidase." Several approaches including fourier transform infrared, 1 H NMR, and 13 C NMR were utilized to confirm the structures of all the synthesized derivatives. In vitro analysis of compounds 3a-3p displayed more effective inhibitory activities against α-glucosidase with IC50 in a range of 2.80-29.66 µM as compared with the commercially available inhibitor, acarbose (IC50 = 873.34 ± 1.67 M). Compound 3h showed the highest inhibitory potential with an IC50 value of 2.80 ± 0.03 µM, followed by 3i (IC50 = 4.13 ± 0.06 µM), 3f (IC50 = 5.18 ± 0.10 µM), 3c (IC50 = 5.42 ± 0.11 µM), 3g (IC50 = 6.17 ± 0.15 µM), 3d (IC50 = 6.76 ± 0.20 µM), 3a (IC50 = 9.59 ± 0.14 µM), and 3n (IC50 = 10.01 ± 0.42 µM). Kinetics analysis of the most potent compound 3h revealed a concentration-dependent form of inhibition by 3h with Ki value = 4.76 ± 0.0068 µM. Additionally, an in silico docking approach was applied to predict the binding patterns of all the compounds, which indicates that the hydrazide and the naphthalene-ol groups play a vital role in the binding of the compounds with the essential residues (i.e., Glu277 and Gln279) of the α-glucosidase enzyme.
Asunto(s)
Diabetes Mellitus , Inhibidores de Glicósido Hidrolasas , Humanos , Estructura Molecular , Relación Estructura-Actividad , Hidrazonas/farmacología , Hidrazonas/química , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Diabetes Mellitus/tratamiento farmacológicoRESUMEN
Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.
Asunto(s)
Cromonas , Diabetes Mellitus Tipo 2 , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Tiosemicarbazonas , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Cromonas/farmacología , Cromonas/síntesis química , Cromonas/química , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/síntesis química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estructura Molecular , Humanos , Simulación de Dinámica Molecular , Simulación por Computador , Relación Dosis-Respuesta a DrogaRESUMEN
Basidiobolomycosis is an uncommon fungal infection caused by the genus Basidiobolus. In immunocompetent children, it usually causes cutaneous infection and rarely affects the gastrointestinal tract, and it is extremely rare for the disease to spread. The present study reports the first case of disseminated basidiobolomycosis caused by Basidiobolus omanensis in a child with acute lymphoblastic leukemia who died as a result of uncontrolled infection and multi-organ failure despite surgical and antifungal therapy with L-AMB and voriconazole. A review of the literature yielded 76 cases, including the current case with the majority of which were reported as invasive gastrointestinal infection. The median age was 4 years (61 male and 15 female) and the majority of these children were from the Middle East (80%), specifically Saudi Arabia (45%). Most patients were treated with systemic antifungal agents (mostly itraconazole and amphotericin B). Surgical intervention was done in 25% of these patients and the death rate was 12%.
Asunto(s)
Entomophthorales , Leucemia-Linfoma Linfoblástico de Células Precursoras , Cigomicosis , Niño , Humanos , Femenino , Masculino , Preescolar , Cigomicosis/diagnóstico , Cigomicosis/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Itraconazol/uso terapéuticoRESUMEN
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 µM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Asunto(s)
Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Ácidos Sulfónicos , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/farmacología , Ácidos Sulfónicos/química , Animales , Bovinos , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Estructura MolecularRESUMEN
Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.
Asunto(s)
Administración Intranasal , Encéfalo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glicéridos , Mucosa Nasal , Tamaño de la Partícula , Verapamilo , Administración Intranasal/métodos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Verapamilo/administración & dosificación , Verapamilo/farmacocinética , Distribución Tisular , Glicéridos/química , Mucosa Nasal/metabolismo , Disponibilidad Biológica , Ratas , Bloqueadores de los Canales de Calcio/farmacocinética , Bloqueadores de los Canales de Calcio/administración & dosificación , Poloxámero/química , Masculino , Química Farmacéutica/métodos , Ratas Wistar , Nanopartículas/químicaRESUMEN
BACKGROUND/AIMS: Macrophages interact with tumor cells within the tumor microenvironment (TME), which plays a crucial role in tumor progression. Cancer cells also can instruct macrophages to facilitate the spread of cancer and the growth of tumors. Thus, modulating macrophages-cancer cells interaction in the TME may be therapeutically beneficial. Although calcitriol (an active form of vitamin D) has anticancer properties, its role in TME is unclear. This study examined the role of calcitriol in the regulation of macrophages and cancer cells in the TME and its influence on the proliferation of breast cancer cells. METHODS: We modeled the TME, in vitro, by collecting conditioned medium from cancer cells (CCM) and macrophages (MCM) and culturing each cell type separately with and without (control) a high-dose (0.5 µM) calcitriol (an active form of vitamin D). An MTT assay was used to examine cell viability. Apoptosis was detected using FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. Western blotting was used to separate and identify proteins. Quantitative real-time PCR was used to analyze gene expression. Molecular docking studies were performed to evaluate the binding type and interactions of calcitriol to the GLUT1 and mTORC1 ligand-binding sites. RESULTS: Calcitriol treatment suppressed the expression of genes and proteins implicated in glycolysis (GLUT1, HKII, LDHA), promoted cancer cell apoptosis, and reduced viability and Cyclin D1gene expression in MCM-induced breast cancer cells. Additionally, calcitriol treatment suppressed mTOR activation in MCM-induced breast cancer cells. Molecular docking studies further showed efficient binding of calcitriol with GLUT1 and mTORC1. Calcitriol also inhibited CCM-mediated induction of CD206 and increased TNFα gene expression in THP1-derived macrophages. CONCLUSION: The results suggest that calcitriol may impact breast cancer progression by inhibiting glycolysis and M2 macrophage polarization via regulating mTOR activation in the TME and warrants further investigation in vivo.
Asunto(s)
Neoplasias de la Mama , Calcitriol , Humanos , Femenino , Calcitriol/farmacología , Calcitriol/uso terapéutico , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Simulación del Acoplamiento Molecular , Microambiente Tumoral/genética , Serina-Treonina Quinasas TOR/metabolismo , Macrófagos/metabolismo , Neoplasias de la Mama/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glucólisis , Proliferación Celular/genética , Línea Celular Tumoral , Activación de MacrófagosRESUMEN
A Pd-catalyzed selective tandem cyclization of the Ugi adduct via Buchwald-Hartwig/C-H bond functionalization reactions has been reported. This sequence offers an interesting approach for synthesizing a wide range of pyrido[1,2-a]pyrazine-3,6-dione scaffolds under mild reaction conditions in moderate to excellent yields. The scope and limitations of the protocol are discussed.
RESUMEN
A catalyst-, oxidant-free and green synthetic route for direct access to a series of novel imidazopyridine-linked coumarins has been devised through tandem C(sp2)-H functionalization/decarboxylation reaction in ethyl acetate as a sustainable medium. Moreover, the utilities of ensured products in further organic synthesis were conducted by Suzuki-Miyaura and Sonogashira cross-coupling reactions. The fluorescence characteristics of the produced molecules are appropriate, and the synthesized scaffolds could promisingly garner future attention in clinical diagnostics and bioimaging research.
RESUMEN
The current studies mainly demonstrate the coumarin based azomethine-clubbed thiazoles synthesis and their in-vitro evaluation for the first time against α-glucosidase. Due to the catalytic role of α-glucosidase, it has become a precise target for the treatment of type diabetes mellitus (T2DM). The high rate of prevalence of diabetes and its associated health related problems led us to scrutinize the anti-diabetic capability of the synthesized thiazole derivatives (6a-6k). The anticipated structures of prepared compounds were confirmed through FT-IR and NMR spectroscopic methods. All the compounds showed several times potent activity than the standard drug, acarbose (IC50 = 873.34 ± 1.67 µM) against α-glucosidase with IC50 values in range of 0.87 ± 0.02-322.61 ± 1.14 µM. The compound 6k displayed the highest anti-diabetic activity (IC50 = 1.88 ± 0.03 µM). Kinetic study revealed that these are competitive inhibitors for α-glucosidase. The mode of binding of the synthesized molecules were further evaluated by molecular docking, which reflects the importance of azomethine group in protein-ligand interaction. The docking scores are complementary with the IC50 values of compounds while the interaction pattern of the compounds clearly demonstrates their structure-activity relationship. Current study reported medicinal importance of thiazole derivative as future drug candidates for the management of Type 2 Diabetes Mellitus (T2DM).
Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Humanos , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Glucosidasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Cinética , Tiazoles/químicaRESUMEN
A series of new thiadiazine derivatives including 2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) propanoic acids (a) and 4-methyl-2-(5-alkyl/aryl-6-thioxo-1,3,5-thiadiazinan-3-yl) pentanoic acids (b) were synthesized by reacting primary alkyl/aryl amines with CS2, followed by reaction with formaldehyde and amino acids. The chemical structures of synthesized compounds were confirmed by 13C- NMR and 1H- NMR techniques. The inhibitory potential of major inflammatory enzymes, COX-2 and 5-LOX was examined. Moreover, anti-nociceptive and anti-inflammatory activities were evaluated in the in vivo thermally induced nociceptive, and carrageenan induced paw edema models in mice. The in-vitro results reflect that these compounds exhibited concentration dependent inhibition of COX-2 and 5-LOX. The tested compounds at 50 mg/kg showed significant effect on thermally induced pain, and reduced latency time (seconds) as compared to the vehicle treated animals. Moreover, tested compounds exhibited percent inhibition of paw edema in the carrageenan induced paw edema model in mice. Furthermore, the binding modes of the most active COX-2 and 5-LOX inhibitors were determined through computational methods. The computational study reflects that the docked compounds have high binding affinities for COX-2 and 5-LOX enzymes, which leads to inhibition of these enzymes.