Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35196516

RESUMEN

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN , Acetilación , Alelos , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
J Clin Immunol ; 43(2): 452-465, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324046

RESUMEN

PURPOSE: Early identification of inborn errors of immunity (IEIs) is crucial due to the significant risk of morbidity and mortality. This study aimed to describe the genetic causes, clinical features, and survival rate of IEIs in Omani patients. METHODS: A prospective study of all Omani patients evaluated for immunodeficiency was conducted over a 17-year period. Clinical features and diagnostic immunological findings were recorded. Targeted gene testing was performed in cases of obvious immunodeficiency. For cases with less conclusive phenotypes, a gene panel was performed, followed by whole-exome sequencing if necessary. RESULTS: A total of 185 patients were diagnosed with IEIs during the study period; of these, 60.5% were male. Mean ages at symptom onset and diagnosis were 30.0 and 50.5 months, respectively. Consanguinity and a family history of IEIs were present in 86.9% and 50.8%, respectively. Most patients presented with lower respiratory infections (65.9%), followed by growth and development manifestations (43.2%). Phagocytic defects were the most common cause of IEIs (31.9%), followed by combined immunodeficiency (21.1%). Overall, 109 of 132 patients (82.6%) who underwent genetic testing received a genetic diagnosis, while testing was inconclusive for the remaining 23 patients (17.4%). Among patients with established diagnoses, 37 genes and 44 variants were identified. Autosomal recessive inheritance was present in 81.7% of patients with gene defects. Several variants were novel. Intravenous immunoglobulin therapy was administered to 39.4% of patients and 21.6% received hematopoietic stem cell transplantation. The overall survival rate was 75.1%. CONCLUSION: This study highlights the genetic causes of IEIs in Omani patients. This information may help in the early identification and management of the disease, thereby improving survival and quality of life.


Asunto(s)
Síndromes de Inmunodeficiencia , Calidad de Vida , Masculino , Humanos , Femenino , Estudios Prospectivos , Pruebas Genéticas , Fenotipo , Consanguinidad , Síndromes de Inmunodeficiencia/genética
3.
Genet Med ; 25(9): 100893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179472

RESUMEN

PURPOSE: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants. METHODS: We collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles. RESULTS: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54∗, p.Arg140∗, p.Lys263∗, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality. CONCLUSION: Our work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1's importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.


Asunto(s)
Proteínas de Unión al GTP , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Proteínas Portadoras , GTP Fosfohidrolasas/genética , Mamíferos/metabolismo , Trastornos del Neurodesarrollo/genética , ARN Mensajero
4.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35718349

RESUMEN

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Asunto(s)
Canales de Calcio , Mitocondrias , Paraplejía Espástica Hereditaria , Canales de Calcio/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/patología , Mutación , Paraplejía Espástica Hereditaria/genética
5.
Pediatr Transplant ; 27(8): e14603, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658594

RESUMEN

BACKGROUND: Domino liver transplant (DLT) represents another type of liver donor to expand the donor pool. Recent reports of successful DLT in children with maple syrup urine disease (MSUD) show promising long-term outcomes. METHODS: It was a retrospective study. All children with MSUD were paired with either recipients with end-stage liver disease (ESLD) or non-MSUD metabolic disease. Each pair underwent simultaneous liver transplant (LT), where the MSUD recipient received the graft from a living-related donor and the liver explanted from the MSUD donor was transplanted to the respective paired domino recipient. We report our experience regarding the techniques and outcomes of DLT at our center. RESULTS: Eleven children with MSUD and 12 respective DLT recipients were enrolled, one of which was domino split-liver transplantation. DLT recipients included seven ESLD, two propionic acidemia (PA), one glycogen storage disease(GSD) type-1, one GSD type-3, and one Citrullinemia. Post-LT ICU and hospital stays were comparable (p > .05). Patient and graft survival was 100% and 66.6% in the MSUD group and DLT recipients at a mean follow-up of 13.5 and 15 months. There was no death in the MSUD group as compared to four in the DLT group. The amino acid levels rapidly normalized after the LT in the children with MSUD and they tolerated the normal unrestricted diet. No vascular, biliary, or graft-related complications were seen in the post-transplant period. No occurrence of MSUD was noted in DLT recipients. CONCLUSION: DLTs have excellent post-surgical outcomes. DLT should be strongly considered and adopted by transplant programs worldwide to circumvent organ shortage.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Acidemia Propiónica , Humanos , Niño , Trasplante de Hígado/métodos , Enfermedad de la Orina de Jarabe de Arce/cirugía , Estudios Retrospectivos , Donadores Vivos , Enfermedad Hepática en Estado Terminal/cirugía
6.
Am J Med Genet A ; 188(8): 2485-2490, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567578

RESUMEN

Alazami syndrome (AS) is an autosomal recessive condition characterized by the cardinal features of severe growth restriction, moderate to severe intellectual disability, and distinctive facial features. Biallelic pathogenic variants of the LARP7, encoding a chaperone of 7SK noncoding RNA, is implicated in this disease. There are <35 reported cases in the literature. All reported cases share the same three cardinal features of the syndrome. Herein, we report on 12 patients with a confirmed diagnosis of AS from eight unrelated families. The cohort shares the same key feature of the syndrome. Moreover, we report additional phenotypic features, including genito-renal anomalies, ophthalmological abnormalities, and congenital heart disease. Whole-exome sequencing was used in all reported cases, implicating a clinical under-recognition of the syndrome. This report further expands the clinical and molecular characteristics of Alazami syndrome.


Asunto(s)
Enanismo , Discapacidad Intelectual , Microcefalia , Enanismo/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Microcefalia/genética , Mutación , Fenotipo , ARN Nuclear Pequeño , Ribonucleoproteínas/genética , Síndrome
7.
J Inherit Metab Dis ; 45(2): 292-307, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35023579

RESUMEN

SUPV3L1 encodes a helicase that is mainly localized in the mitochondria. It has been shown in vitro to possess both double-stranded RNA and DNA unwinding activity that is ATP-dependent. Here we report the first two patients for this gene who presented with a homozygous preliminary stop codon resulting in a C-terminal truncation of the SUPV3L1 protein. They presented with a characteristic phenotype of neurodegenerative nature with progressive spastic paraparesis, growth restriction, hypopigmentation, and predisposition to autoimmune disease. Ophthalmological examination showed severe photophobia with corneal erosions, optic atrophy, and pigmentary retinopathy, while neuroimaging showed atrophy of the optic chiasm and the pons with calcification of putamina, with intermittent and mild elevation of lactate. We show that the amino acids that are eliminated by the preliminary stop codon are highly conserved and are predicted to form an amphipathic helix. To investigate if the mutation causes mitochondrial dysfunction, we examined fibroblasts of the proband. We observed very low expression of the truncated protein, a reduction in the mature ND6 mRNA species as well as the accumulation of double-stranded RNA. Lentiviral complementation with the full-length SUPV3L1 cDNA partly restored the observed RNA phenotypes, supporting that the SUPV3L1 mutation in these patients is pathogenic and the cause of the disease.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Bicatenario , Hermanos , Codón de Terminación , ADN Mitocondrial/genética , Humanos , Mutación , ARN Mitocondrial
8.
Hum Genet ; 140(8): 1143-1156, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33974130

RESUMEN

Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Mucosa Intestinal/metabolismo , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Polimorfismo de Nucleótido Simple , Proteínas Qa-SNARE/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Distrofias Retinianas/genética , Anciano , Anciano de 80 o más Años , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Autopsia , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/patología , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Mucosa Intestinal/patología , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/patología , Ratones , Ratones Noqueados , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/metabolismo , Mucolipidosis/patología , Fenotipo , Proteínas Qa-SNARE/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patología , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Secuenciación del Exoma
9.
Hum Genet ; 139(5): 615-622, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32128616

RESUMEN

Myelin pathologies are an important cause of multifactorial, e.g., multiple sclerosis, and Mendelian, e.g., leukodystrophy, neurological disorders. CNP encodes a major component of myelin and its CNS expression is exclusive to myelin-forming oligodendrocytes. Deficiency of CNP in mouse causes a lethal white matter neurodegenerative phenotype. However, a corresponding human phenotype has not been described to date. Here, we describe a multiplex consanguineous family from Oman in which multiple affected members display a remarkably consistent phenotype of neuroregression with profound brain white matter loss. A novel homozygous missense variant in CNP was identified by combined autozygome/exome analysis. Immunoblot analysis suggests that this is a null allele in patient fibroblasts, which display abnormal F-actin organization. Our results suggest the establishment of a novel CNP-related hypomyelinating leukodystrophy in humans.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/deficiencia , Mutación , Enfermedad de Pelizaeus-Merzbacher/etiología , Índice de Severidad de la Enfermedad , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Secuencia de Aminoácidos , Niño , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Masculino , Linaje , Enfermedad de Pelizaeus-Merzbacher/patología , Fenotipo , Pronóstico , Homología de Secuencia
10.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31820119

RESUMEN

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Asunto(s)
Encefalopatías/genética , Síndromes Epilépticos/genética , Genes Esenciales/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Animales , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Linaje , Pez Cebra
12.
Clin Genet ; 94(6): 495-501, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125339

RESUMEN

Recently, with the advancement in next generation sequencing (NGS) along with the improvement of bioinformatics tools, whole exome sequencing (WES) has become the most efficient diagnostic test for patients with intellectual disability (ID). This study aims to estimate the yield of a reanalysis of ID negative exome cases after data reannotation. Total of 50 data files of exome sequencing, representing 50 samples were collected. The inclusion criteria include ID phenotype, and previous analysis indicated a negative result (no abnormality detected). These files were pre-processed and reannotated using ANNOVAR tool. Prioritized variants in the 50 cases studied were classified into three groups, (1) disease-causative variants (2) possible disease-causing variants and (3) variants in novel genes. Reanalysis resulted in the identification of pathogenic/likely pathogenic variants in six cases (12%). Thirteen cases (26%) were classified as having possible disease-causing variants. Candidate genes requiring future functional studies were detected in seven cases (14%). Improvement in bioinformatics tools, update in the genetic databases and literature, and patients' clinical phenotype update were the main reasons for identification of these variants in this study.


Asunto(s)
Secuenciación del Exoma , Exoma , Estudio de Asociación del Genoma Completo , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Consanguinidad , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Lactante , Masculino , Mutación , Linaje , Fenotipo
13.
Brain ; 140(3): 547-554, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052917

RESUMEN

Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function.


Asunto(s)
Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Mutación/genética , Fosfolípidos/biosíntesis , Transducción de Señal/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Niño , Preescolar , Cromatografía Liquida , Consanguinidad , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Espectrometría de Masas , Omán , Fosfolípidos/sangre , Saccharomyces cerevisiae , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/patología
14.
J Perinat Med ; 46(9): 968-974, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-28822227

RESUMEN

OBJECTIVE: The purpose of this study was to determine the frequency of non-immune hydrops fetalis (NIHF) among all pregnancies referred for prenatal care at Sultan Qaboos University Hospital (SQUH) during the study period and to evaluate the underlying etiologies of NIH. STUDY DESIGN: All pregnancies referred to SQUH between February 2014 and December 2015 were identified, and all pregnancies meeting the diagnosis of NIHF were included in this study. All cases of NIHF referred to our center during this period underwent standard systematic diagnostic work-up that included biochemical and molecular studies in addition to the standard investigations for hydrops fetalis. Clinical characteristics and results of the diagnostic work-up were retrospectively reviewed. RESULTS: A total of 3234 pregnancies were referred for prenatal care at SQUH during the study period, and 12 pregnancies were affected by NIHF. An underlying diagnosis was established in nine cases, and the majority of cases (7/9) were caused by inborn errors of metabolism (IEM). These included a novel homozygous variant in the AARS2 gene (5/7) and two cases of galactosialidosis (2/7). CONCLUSION: IEM was a major cause of NIHF in this cohort. The AARS2 variant accounts for a significant number of cases with NIHF in this cohort of Omani patients.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Hidropesía Fetal , Enfermedades por Almacenamiento Lisosomal , Errores Innatos del Metabolismo , Adulto , Femenino , Homocigoto , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/epidemiología , Hidropesía Fetal/etiología , Hidropesía Fetal/genética , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/epidemiología , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Omán/epidemiología , Embarazo , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/estadística & datos numéricos , Estudios Retrospectivos , Medición de Riesgo
15.
Neurosciences (Riyadh) ; 23(1): 52-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29455222

RESUMEN

Primary hyperammonemic encephalopathy due to urea cycle disorders (UCD) typically manifests with episodic unresponsiveness and this clinical entity is not often included in the differential diagnosis of presumed non-convulsive status epilepticus (NCSE). However, this diagnostic consideration has therapeutic implications. In this report, we document the therapeutic importance of elucidating the specific cause of hyperammonemic encephalopathy that closely mimicked NCSE through 2 unique illustrative cases.


Asunto(s)
Encefalopatías/diagnóstico , Estado Epiléptico/diagnóstico , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Adulto , Amoníaco/sangre , Encefalopatías/sangre , Encefalopatías/terapia , Diagnóstico Diferencial , Electroencefalografía , Femenino , Humanos , Masculino , Estado Epiléptico/sangre , Estado Epiléptico/terapia , Trastornos Innatos del Ciclo de la Urea/sangre , Trastornos Innatos del Ciclo de la Urea/terapia
16.
Hum Mutat ; 38(6): 692-703, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28247525

RESUMEN

COX5A is a nuclear-encoded subunit of mitochondrial respiratory chain complex IV (cytochrome c oxidase). We present patients with a homozygous pathogenic variant in the COX5A gene. Clinical details of two affected siblings suffering from early-onset pulmonary arterial hypertension, lactic acidemia, failure to thrive, and isolated complex IV deficiency are presented. We show that the variant lies within the evolutionarily conserved COX5A/COX4 interface domain, suggesting that it alters the interaction between these two subunits during complex IV biogenesis. In patient skin fibroblasts, the enzymatic activity and protein levels of complex IV and several of its subunits are reduced. Lentiviral complementation rescues complex IV deficiency. The monomeric COX1 assembly intermediate accumulates demonstrating a function of COX5A in complex IV biogenesis. A potential therapeutic lead is demonstrated by showing that copper supplementation leads to partial rescue of complex IV deficiency in patient fibroblasts.


Asunto(s)
Acidosis Láctica/genética , Ciclooxigenasa 1/genética , Grupo Citocromo c/genética , Insuficiencia de Crecimiento/genética , Hipertensión Pulmonar/genética , Acidosis Láctica/patología , Núcleo Celular/genética , Ciclooxigenasa 1/química , Grupo Citocromo c/química , Deficiencia de Citocromo-c Oxidasa , Complejo IV de Transporte de Electrones , Insuficiencia de Crecimiento/patología , Fibroblastos , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Hipertensión Pulmonar/patología , Mitocondrias/genética , Mutación , Subunidades de Proteína/genética
17.
Hum Genet ; 136(8): 921-939, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28600779

RESUMEN

In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most "negative" clinical exome tests are unsolved due to interpretation rather than technical limitations.


Asunto(s)
Exoma , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología , Genoma Humano , Consanguinidad , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Anotación de Secuencia Molecular , Morbilidad , Mutación , Fenotipo , Reproducibilidad de los Resultados , Arabia Saudita/epidemiología , Análisis de Secuencia de ADN
18.
Hum Genet ; 136(11-12): 1419-1429, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28940097

RESUMEN

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Asunto(s)
Exoma/genética , Heterogeneidad Genética , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Conformación Proteica
19.
Am J Hum Genet ; 95(3): 315-25, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25175347

RESUMEN

Cytochrome c oxidase (COX) deficiency is a frequent biochemical abnormality in mitochondrial disorders, but a large fraction of cases remains genetically undetermined. Whole-exome sequencing led to the identification of APOPT1 mutations in two Italian sisters and in a third Turkish individual presenting severe COX deficiency. All three subjects presented a distinctive brain MRI pattern characterized by cavitating leukodystrophy, predominantly in the posterior region of the cerebral hemispheres. We then found APOPT1 mutations in three additional unrelated children, selected on the basis of these particular MRI features. All identified mutations predicted the synthesis of severely damaged protein variants. The clinical features of the six subjects varied widely from acute neurometabolic decompensation in late infancy to subtle neurological signs, which appeared in adolescence; all presented a chronic, long-surviving clinical course. We showed that APOPT1 is targeted to and localized within mitochondria by an N-terminal mitochondrial targeting sequence that is eventually cleaved off from the mature protein. We then showed that APOPT1 is virtually absent in fibroblasts cultured in standard conditions, but its levels increase by inhibiting the proteasome or after oxidative challenge. Mutant fibroblasts showed reduced amount of COX holocomplex and higher levels of reactive oxygen species, which both shifted toward control values by expressing a recombinant, wild-type APOPT1 cDNA. The shRNA-mediated knockdown of APOPT1 in myoblasts and fibroblasts caused dramatic decrease in cell viability. APOPT1 mutations are responsible for infantile or childhood-onset mitochondrial disease, hallmarked by the combination of profound COX deficiency with a distinctive neuroimaging presentation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Complejo IV de Transporte de Electrones/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Deficiencia de Citocromo-c Oxidasa , Complejo IV de Transporte de Electrones/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Leucoencefalopatías/enzimología , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Mioblastos/metabolismo , Mioblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA